
Four Architectures – One Application 
Brian J. Shelburne 
Wittenberg University 

Dept of Mathematics and Computer 
Science 

Springfield Ohio 45501 
937-327-7862 

bshelburne@wittenberg.edu 

 
 
 

ABSTRACT 
Like many computer organization courses Wittenberg’s Comp 
255: Principles of Computer Organization has an assembler 
language component. Assembler provides a language to describe 
architectural features and assembler programming assignments 
allow students to work directly with those features. Unfortunately, 
no single computer architecture embodies all the possible 
architectural features one might wish to present. The solution I’ve 
adopted is to cover multiple architectures and their assemblers 
which allow a wider range of features to be covered. To 
compensate for the added burden of learning multiple assemblers, 
programming assignments are based on a common application. 
This allows the student to concentrate on the particulars of the 
assembler and its underlying architecture. The common 
application is carefully designed to span a range of standard 
programming approaches or techniques. Programming one 
application in four assemblers highlights the similarities and 
difference of the four underlying architectures. 

Categories and Subject Descriptors 
C.1.[Processor Architectures]; D.3.2 [Programming Languages] 
Macro and Assembly Languages  

General Terms 
Algorithms, Design, Languages  

Keywords 
Computer Organization, Assembler, PDP-8, RISC Architectures, 
Stack Architectures, Java Byte code, Intel 80x86, Simulator 

1. INTRODUCTION 
Wittenberg’s COMP 255: Principles of Computer Organization 
course is a sophomore level course usually taken after the student 
has completed an introductory programming course. Textbooks 
for the course have been the “standards”: Tanenbaum’s Structured 
Computer Organization [6],  Stalling’s Computer Organization & 
Architecture [5] and currently Murdocca & Heurling’s Computer 
Architecture and Organization [2]. The teaching of assembler has 
always been integral to such courses as witnessed by the fact that 
a number of textbooks on computer organization come bundled 
with simulators that allow students to create, edit, and run 
assembler language programs for the architectures discussed in 
the text [2], [3], [7]. The pedagogical use of these simulators is 
obvious: algorithms can be implemented using the assembler of 
the architectures and students can write programs on what they 
learn [8] [9] [10].  

Unfortunately no single computer architecture can embody all 
possible architectural features: register vs. stack architectures, 
RISC vs. CISC-like features, addressing modes, and instruction 
mixes etc.  The options are to either carefully choose/design an 
architecture that covers the most important architectural features 
or to study multiple computer architectures/assemblers I have 
chosen the latter course of action. 

 

The decision to cover multiple architectures was one that evolved 
over time. What originally was a course in VAX assembler ([1]) 
was augmented by the introduction of PDP-8 assembler. This was 
done because I had built a simple PDP-8 simulator program [4] 
and the simpler PDP-8 architecture provided a gentler 
introduction to assembler programming. VAX assembler gave 
way to Intel 80x86assembler. Textbooks used for the course 
introduced other architectures and simulators. Tanenbaum’s 
Structured Computer Organization 4th Ed. [6] introduced a micro-
programmable simulator which could execute a subset of Java 
Byte code. Murdocca and Heuring’s textbook [2] introduced an 
architecture/simulator called the ARC (short for A Risc 
Computer) which was based on SPARC architecture. 

 

By this time four very different computer architectures were 
incorporated into the course and to varying degrees studied, 
compared and contrasted. Software in the form of simulators or 
assemblers allowed students to write and execute assembler 
language programs for each of the four architectures. By the end 
of the course students had written assembler programs for the 
PDP-8, the RISC-like ARC architecture, a stack architecture 
based on Java Byte Code, and the Intel 80x86.  

 

Having four architectures to work with permitted flexibility in 
generating interesting and contrasting approaches when 
examining different architectural issues. To compensate for the 
additional time required to cover the details of four different 
assemblers, a common programming application was the basis for 
many labs and assignments. The application had to be interesting 
in that it required non-trivial use of programming techniques 
involving control structures, arithmetic/logical operations, 
addressing modes and I/0. This application (which evolved over 
time) was to find the prime factorization of an integer. 
Specifically the application read an integer, found all prime 
divisors, stored them in an array, and then displayed the array The 
basic logic is given by the C++ code below.  
 

 



void main() 

{ 

   int A;    // number to factor 

   int D[20];   // array of prime divisors 

   cout << “Enter an integer > 1: “; 

   cin >> A;   

   int n = 2;    // initial trial divisor 

   int last = 0; // number of items in D 

   while (A > 1) 

      {if ((A % n) == 0)// does n divide A?  

         {D[last] = n;  // yes – store n  

          last++;   

          A = A / n;    // factor out n 

         }          

       else 

          n++;   // no - increment divisor 

      } 

  for (int i = 0; i < last; i++) 

     cout << D[i] << endl; 

}    

 

The operations needed to implement the above ran the gamut of 
programming techniques. The completed application 

1. read and converted a string of ASCII digits to an integer  

2. implemented integer division  

3. used an indefinite loop to search for all prime divisors 

4. inserted an item into an array  

5. used a counting loop to access all items in an array 

6. converted each integer to a string of ASCII digits and 
displayed each digit 

7. consolidated one or more of the above into a subroutine 
with parameter passing 

 

Although the prime factorization application could be fully 
implemented in each of the assemblers, this was not done. Given 
the differences in each assembler/architecture each piece of the 
application was implemented using the most appropriate 
assembler, the one that best illustrated a programming technique 
as constrained by the underlying architecture. For example, since 
both the Java Byte code simulator and the Intel 80x86 had a 
division instruction while the PDP-8 and ARC simulators didn’t, 
it made more sense to do division in software only on the latter 
two. The effect was to do an incremental built of the prime 
factorization application over four architectures which cumulated 
with the completed application being done in Intel 
80x86assembler. The four architectures/assemblers were covered 
sequentially starting with the simpler PDP-8 and ending with the 
Intel 80x86.  

2. THE PDP-8 
Of the four architectures, the PDP-8 was the simplest to learn but 
for large applications the most challenging to work with. It is 
(was) a 12 bit word machine with 12 bit addressing, fixed length 
instructions and only eight 3-bit op-codes. The PDP-8 had a 
single 12-bit Accumulator, an MQ register for 
multiplication/division and no index register(s). The lack of index 
registers was compensated for by indirect addressing. A carry out 
from the leftmost bit of the Accumulator was captured in a single 
bit Link register which gave the appearance of a combined 
Link/Accumulator register pair. Six of the op-codes were memory 
reference instructions (MRI); the two remaining op-codes used 
the bits of the address field as an op-code extension field for 
groups of instructions that manipulated the Link/ Accumulator 
and MQ registers. A number of these were conditional skip 
instructions which tested the accumulator and/or link bit. 
Reversing the test and following the condition skip with the 
unconditional MRI Jump (JMP) instruction resulted in a 
conditional branch operation. 

 

The only arithmetic operation supported was a Two’s complement 
Add (TAD) instruction. The non-MRI Complement and Increment 
Accumulator (CIA) instruction could be used to negate a number 
so subtraction was done by adding a negative value. 
Multiplication and division was done in software1   

 

The MRI instruction Increment and Skip on Zero (ISZ) 
incremented the contents of its memory address skipping the next 
instruction if the result was zero. If the memory address was first 
initialized to a negative value, the skip on zero feature of ISZ 
paired with an unconditional jump instruction (JMP) implemented 
a counting loop. The remaining three MRI instructions were a 
Deposit and Clear Accumulator (DCA), a sort of destructive store, 
a Boolean AND instruction, and a Jump to Subroutine (JMS) 
instruction. 

 

On the PDP-8 division for the prime factorization application was 
done by repeated subtraction. To compute /Q A B= and 

%R A B=  the divisor B was first negated and repeatedly added 
(i.e. subtracted) from the dividend A in the accumulator. As long 
as the result was positive, the quotient was incremented by the 
ISZ instruction. 

 
    cla  // Clear Accumulator 

    dca Q // clear Q 

    tad B // load B (divisor) 

    cia // negate 

    dca MB // store at MB (minus divisor) 

    tad A // load A (dividend) 

L2, tad MB // subtract divisor 

                                                                 
1 The PDP-8 had an optional Extended Arithmetic Element (EAE) 

which did multiplication and division in hardware which was 
not implemented on the PDP-8simulator. 



    spa // Skip on Positive Accumulator 

    jmp L3 // else exit loop 

    isz Q // increment Quotient 

    jmp L2 // loop: note Q > 0 

L3, tad B // restore remainder 

    dca R // store AC to remainder 

 
Since multiplication and division by ten is needed to read and 
write decimal integers, I/O was done in octal. Given a 12 bit 
unsigned octal integer, you left rotate the number three bits so the 
leading octal digit is in the lower three-bit of the accumulator, 
mask out the upper 9 bits, convert to ASCII by adding 48 decimal 
and print the ASCII character. The code given below does this 
using the ISZ-JMP configuration to loop 4 times. (The variables 
m4, mask, and p48 contain the constants -4, 07(octal) and +48 
respectively; the PDP-8 did not support immediate mode 
addressing.) 
 

 cla cll // clear AC and Link 

 tad m4        // load -4 

 dca cnt // store in loop counter 

L4, cla cll // clear AC and Link 

tad number // load number 

 cll ral // left rotate 

 szl 

 iac 

 cll ral // left rotate 

 szl 

 iac 

 cll ral // left rotate 

 szl 

 iac 

 dca number // store it 

 tad number // load it 

 and mask // mask out upper 9 bits 

 tad p48 // add 48 to convert to 

                    // ASCII  

 jms TYPE // call the type 

// subroutine to display  

 isz cnt  // loop control 

 jmp L4  

 

The non-MRI Rotate Accumulator Left (RAL) instruction actually 
rotates the Link/Accumulator pair (a.k.a. rotate left with carry). To 
rotate the accumulator alone you had to CLear the Link bit (CLL) 
and then rotate left (when CLL and RAL instructions were 
combined the clear was executed before the rotate) then test the 
link bit using the Skip on Zero Link (SZL) instruction to skip over 
the Increment ACcumulator (IAC) instruction which would 
otherwise set the right most bit of the accumulator which was 
cleared by CLL RAL. A little reflection shows that if the left most 

bit of the accumulator was initially set or cleared, the right most 
bit of the accumulator was subsequently set or cleared.    

 

Printing the ASCII digit in the accumulator was done by a 
subroutine call (JMS) of the TYPE routine which had been 
previously written. 

  

At this point the strengths and weaknesses of the PDP-8 are 
apparent. While it is possible to accomplish anything with a very 
limited instruction set, it takes a lot of very clever and intricate 
coding to do so.   

 

3. THE ARC – A RISC COMPUTER 
In their textbook Computer Architecture and Organization: An 
Integrated Approach [2] authors Murcocca and Heuring introduce 
a very nice architecture/assembler called the ARC (A Risc 
Computer) which is based on the SPARC architecture. There is 
also a simulator which can be used to edit, assemble and execute 
simple ARC assembler programs.  

 

The ARC is a 32-bit load and store architecture with thirty-two 
32-bit registers (%r0 through %r31) with register %r0 being 
permanently wired to 0. Like the PDP-8, instructions are fixed 
length. Memory access is restricted to a register load instruction 
(ld) and a register store (st) instruction. Calculations are done in 
registers, all arithmetic and logical operations have three 
operands: two source and one destination. Thus a simple c = a + b 
instruction is implemented as 

 
     ld [a], %r1     ! $r1 <- a 

     ld [b], %r2  ! %r2 <- b 

    add %r1, %r2, %r3 ! %r3 = a + b 

     st %r3, [c]   ! c <- %r3 

 

Note the left to right data flow. Since register %r0 is hardwired to 
0, any result written to %r0 is thrown away.   Register %r0 is also 
used to implement immediate mode addressing when registers can 
be initialized to hold small values (see below). Arithmetic and 
logical operations can either set or not set condition codes 
(addcc vs add; subcc vs sub). Conditional branching is done 
by testing the condition codes so for example bl will branch if 
the condition codes indicate a less than zero result. Unlike the 
PDP-8 there is no counting loop instruction (i.e. ISZ); instead a 
register containing the count is decremented until 0 is reached 
(see below). 

 

The ARC simulator does not support a division (or multiplication) 
operation so as with the PDP-8 division is implemented in 
software. However, the richer instruction set of the ARC allows 
division to be implemented using the “standard” shift, test and 
restore algorithm (see Murdocca and Heurling [2] p. 71). In the 
code below register %r1 holds the divisor, %r2 holds the 
remainder, %r3 holds the dividend/quotient and %r4 is the loop 
counter (initialized to 32).  A double register left shift shifts the 



bits of the dividend into register %r2 where it is tested against the 
divisor. If subtraction of the divisor results in a positive value the 
least significant bit of %r3 (quotient) is set. 

 
     xor   %r2,%r2,%r2 ! clear R 

     add   %r0,32, %r4 ! init loop counter 

d1:  addcc %r3,%r3,%r3 ! left shift      

     add   %r2,%r2,%r2 !  %r2 - %r3 pair 

     bcc   d2    ! branch on carry clear 

     add   %r2,1  ,%r2 ! %r2 <- carry 

d2:  subcc %r2,%r1,%r0 ! test if 

     bl d3             !  %r1 � %r2 

     sub   %r2,%r1,%r2 ! if yes subtract 

     add   %r3,1,  %r3 ! & set lsb of Q 

d3:  subcc %r4,1,  %r4 ! decrement %r4 

     bg d1             !  loop if > 0 

  

It is instructive to study the nuances in the four lines of code 
needed to left shift the double register pair %r2-%r3.  Left shifts 
of %r3 and %r2 are done using addcc and add respectively. If 
a carry into %r2 is needed, the branch on carry clear (bcc) 
instruction is not taken and 1 is added to %r2.     

 

4. THE JAVA BYTE CODE SIMULATOR  
Although the prime factorization application can be completely 
implemented on each architecture/simulator, the approach taken 
was to code those parts of the application which best exhibit some 
feature of a particular architecture. Because reading and writing 
decimal integers requires multiplication and division by ten which 
neither the PDP-8 nor the ARC simulators support in hardware, 
I/O of decimal integers not done. This is reserved for the Java 
Byte Code simulator which has built-in multiplication and 
division instructions.  

 

The idea for a Java Byte Code simulator came from Tanenbaum’s 
Structured Computer Organization 4th Ed. [6] where he 
introduces a micro-architecture simulator which implements a 
subset of Java Byte Code. Based on this, I wrote my own 
simulator which expanded the Java Byte code instruction set to 
include integer multiplication, division and modulo operations as 
well as including two non-standard I/O operations used by 
Tanenbaum:  IN which pushes the next byte from the input buffer 
onto the stack and OUT which pops the byte on top of the stack to 
the output buffer (where it is subsequently displayed).  This made 
the coding of decimal integer read and write routines fairly easy to 
do. 

  

A stack architecture has no registers; instead the 32-bit operands 
are assumed to be on the stack and any results from an operation 
are automatically pushed back onto the stack. With implicit 
operands many instructions consist of a single byte length op-code 
making the instruction stream very compact; instructions are 
variable length ranging from one to three bytes. 

References to memory are restricted to the push and pop 
operations iload and istore (the i is for integer). Hence 
writing assembler for the Java Byte Code engine has somewhat 
the feel of writing code for the load and store ARC. Since stack 
order is important there is a swap operation to reverse the two 
top items on the stack. Conditional branching is done by testing 
the top of the stack but since this pops the top of the stack, a dup 
(duplicate) operation is needed to make a copy first. A bipush 
(byte integer push) operation is used to push small integer 
constants onto the stack. 

 

A good demonstration of the advantages of a stack architecture is 
seen in the way an unsigned decimal integer is displayed. The 
standard approach to output a decimal integer is to use repeated 
modulo 10 and divide by 10 operations to extract each digit. 
Given an integer you modulo by 10 to extract the digit then divide 
by 10 and go again with the result until zero is reached. For 
example 173%10 is 3 and 173/10 and 17. So after extracting the 
least significant digit 3 you continue with the 17. As this 
algorithm produces the digits in reverse order, a stack is needed to 
re-reverse them which is easily done with the stack oriented Java 
Byte Code architecture. 
 

     iload number / push number on stack  

     bipush 0     / push null to mark end  

     swap         / swap null & number 

P0:  dup          / duplicate TOS 

     bipush 10    / push 10 

     irem         / TOS = number % 10 

     bipush 48    / push 48 = ASCII “0” 

     iadd         / add to convert to ASCII 

     swap         / bring number to top   

     bipush 10    / push 10  

     idiv         / TOS = number / 10 

     dup          / duplicate TOS 

     ifne P0      / if TOS � 0 goto P0 

     pop          / else done – throw out 0 

P1:  dup          / duplicate TOS 

     ifeq P2      / if TOS=0 goto p2 (done)          

     out          / output TOS 

     goto P1      / loop 

P2:  pop          / done - pop null  

 

5. OTHER  PROGRAM TECHNIQUES 
Lack of space permits only mentioning some of the other 
programming techniques which, due to architectural differences, 
were implemented various ways on the four architectures. Since 
the ARC and Intel 80x86 support indexed addressing, arrays were 
easiest to implement on these two (although they can be 
implemented on all four architectures). The same is true for 
subroutines calls and parameter passing; both were easier to do on 
the ARC and the Intel 80x86. The division algorithm on the ARC 
was coded as a subroutine using pass by value in for the divisor 



and dividend and pass by value out for the quotient and remainder 
(as opposed to pass by reference). The mechanism of pass by 
reference for out parameters was covered when the prime 
factorization application was implemented on the Intel 80x86 
 

6. THE INTEL 80x86 
By the time the Intel 80x86 architecture was considered, all the 
pieces of the prime factorization application had been 
programmed on at least one of the three architectures. 
Implementing the application on the Intel 80x86 mostly required 
redoing the decimal integer read and write routines using a 
register architecture and implementing subroutine calls and 
parameter passing using pass by value and pass  by reference 
parameters. Thus the final assignment ran: In previous labs and 
assignments you wrote programs that found all the prime divisors 
of an integer. Write a similar program in Intel 80x86assembler 
which does the same. Your program will prompt for and a read a 
positive integer, find all the prime divisors and as each is found 
store it in an array, then print out the contents of the array. Your 
program should make efficient use of subroutines and parameter 
passing.  

 

7. SUMMARY 
Assembler programming exercises are used to support and 
demonstrate the computer architectures being studied in a   
computer organization course. However as no one 
architecture/assembler embodies all the architectural features one 
would like to cover, I made use of four different 
architectures/assemblers. To partially offset the added time needed 
to learn the features (and idiosyncrasies) of each 
architecture/assembler a common application (or parts of it) was 
used for labs and assignments. Coding throughout course 
proceeded like an incremental build with pieces of the application 
being implemented on the architecture/assembler that best 
demonstrated some particular architectural feature. A common 
application reduced the burden of programming while at the same 

time provided a convenient way to compare and contrast the 
different architectures.  
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