
Four Architectures – One Application
Brian J. Shelburne
Wittenberg University

Dept of Mathematics and Computer
Science

Springfield Ohio 45501
937-327-7862

bshelburne@wittenberg.edu

ABSTRACT
Like many computer organization courses Wittenberg’s Comp
255: Principles of Computer Organization has an assembler
language component. Assembler provides a language to describe
architectural features and assembler programming assignments
allow students to work directly with those features. Unfortunately,
no single computer architecture embodies all the possible
architectural features one might wish to present. The solution I’ve
adopted is to cover multiple architectures and their assemblers
which allow a wider range of features to be covered. To
compensate for the added burden of learning multiple assemblers,
programming assignments are based on a common application.
This allows the student to concentrate on the particulars of the
assembler and its underlying architecture. The common
application is carefully designed to span a range of standard
programming approaches or techniques. Programming one
application in four assemblers highlights the similarities and
difference of the four underlying architectures.

Categories and Subject Descriptors
C.1.[Processor Architectures]; D.3.2 [Programming Languages]
Macro and Assembly Languages

General Terms
Algorithms, Design, Languages

Keywords
Computer Organization, Assembler, PDP-8, RISC Architectures,
Stack Architectures, Java Byte code, Intel 80x86, Simulator

1. INTRODUCTION
Wittenberg’s COMP 255: Principles of Computer Organization
course is a sophomore level course usually taken after the student
has completed an introductory programming course. Textbooks
for the course have been the “standards”: Tanenbaum’s Structured
Computer Organization [6], Stalling’s Computer Organization &
Architecture [5] and currently Murdocca & Heurling’s Computer
Architecture and Organization [2]. The teaching of assembler has
always been integral to such courses as witnessed by the fact that
a number of textbooks on computer organization come bundled
with simulators that allow students to create, edit, and run
assembler language programs for the architectures discussed in
the text [2], [3], [7]. The pedagogical use of these simulators is
obvious: algorithms can be implemented using the assembler of
the architectures and students can write programs on what they
learn [8] [9] [10].

Unfortunately no single computer architecture can embody all
possible architectural features: register vs. stack architectures,
RISC vs. CISC-like features, addressing modes, and instruction
mixes etc. The options are to either carefully choose/design an
architecture that covers the most important architectural features
or to study multiple computer architectures/assemblers I have
chosen the latter course of action.

The decision to cover multiple architectures was one that evolved
over time. What originally was a course in VAX assembler ([1])
was augmented by the introduction of PDP-8 assembler. This was
done because I had built a simple PDP-8 simulator program [4]
and the simpler PDP-8 architecture provided a gentler
introduction to assembler programming. VAX assembler gave
way to Intel 80x86assembler. Textbooks used for the course
introduced other architectures and simulators. Tanenbaum’s
Structured Computer Organization 4th Ed. [6] introduced a micro-
programmable simulator which could execute a subset of Java
Byte code. Murdocca and Heuring’s textbook [2] introduced an
architecture/simulator called the ARC (short for A Risc
Computer) which was based on SPARC architecture.

By this time four very different computer architectures were
incorporated into the course and to varying degrees studied,
compared and contrasted. Software in the form of simulators or
assemblers allowed students to write and execute assembler
language programs for each of the four architectures. By the end
of the course students had written assembler programs for the
PDP-8, the RISC-like ARC architecture, a stack architecture
based on Java Byte Code, and the Intel 80x86.

Having four architectures to work with permitted flexibility in
generating interesting and contrasting approaches when
examining different architectural issues. To compensate for the
additional time required to cover the details of four different
assemblers, a common programming application was the basis for
many labs and assignments. The application had to be interesting
in that it required non-trivial use of programming techniques
involving control structures, arithmetic/logical operations,
addressing modes and I/0. This application (which evolved over
time) was to find the prime factorization of an integer.
Specifically the application read an integer, found all prime
divisors, stored them in an array, and then displayed the array The
basic logic is given by the C++ code below.

void main()

{

 int A; // number to factor

 int D[20]; // array of prime divisors

 cout << “Enter an integer > 1: “;

 cin >> A;

 int n = 2; // initial trial divisor

 int last = 0; // number of items in D

 while (A > 1)

 {if ((A % n) == 0)// does n divide A?

 {D[last] = n; // yes – store n

 last++;

 A = A / n; // factor out n

 }

 else

 n++; // no - increment divisor

 }

 for (int i = 0; i < last; i++)

 cout << D[i] << endl;

}

The operations needed to implement the above ran the gamut of
programming techniques. The completed application

1. read and converted a string of ASCII digits to an integer

2. implemented integer division

3. used an indefinite loop to search for all prime divisors

4. inserted an item into an array

5. used a counting loop to access all items in an array

6. converted each integer to a string of ASCII digits and
displayed each digit

7. consolidated one or more of the above into a subroutine
with parameter passing

Although the prime factorization application could be fully
implemented in each of the assemblers, this was not done. Given
the differences in each assembler/architecture each piece of the
application was implemented using the most appropriate
assembler, the one that best illustrated a programming technique
as constrained by the underlying architecture. For example, since
both the Java Byte code simulator and the Intel 80x86 had a
division instruction while the PDP-8 and ARC simulators didn’t,
it made more sense to do division in software only on the latter
two. The effect was to do an incremental built of the prime
factorization application over four architectures which cumulated
with the completed application being done in Intel
80x86assembler. The four architectures/assemblers were covered
sequentially starting with the simpler PDP-8 and ending with the
Intel 80x86.

2. THE PDP-8
Of the four architectures, the PDP-8 was the simplest to learn but
for large applications the most challenging to work with. It is
(was) a 12 bit word machine with 12 bit addressing, fixed length
instructions and only eight 3-bit op-codes. The PDP-8 had a
single 12-bit Accumulator, an MQ register for
multiplication/division and no index register(s). The lack of index
registers was compensated for by indirect addressing. A carry out
from the leftmost bit of the Accumulator was captured in a single
bit Link register which gave the appearance of a combined
Link/Accumulator register pair. Six of the op-codes were memory
reference instructions (MRI); the two remaining op-codes used
the bits of the address field as an op-code extension field for
groups of instructions that manipulated the Link/ Accumulator
and MQ registers. A number of these were conditional skip
instructions which tested the accumulator and/or link bit.
Reversing the test and following the condition skip with the
unconditional MRI Jump (JMP) instruction resulted in a
conditional branch operation.

The only arithmetic operation supported was a Two’s complement
Add (TAD) instruction. The non-MRI Complement and Increment
Accumulator (CIA) instruction could be used to negate a number
so subtraction was done by adding a negative value.
Multiplication and division was done in software1

The MRI instruction Increment and Skip on Zero (ISZ)
incremented the contents of its memory address skipping the next
instruction if the result was zero. If the memory address was first
initialized to a negative value, the skip on zero feature of ISZ
paired with an unconditional jump instruction (JMP) implemented
a counting loop. The remaining three MRI instructions were a
Deposit and Clear Accumulator (DCA), a sort of destructive store,
a Boolean AND instruction, and a Jump to Subroutine (JMS)
instruction.

On the PDP-8 division for the prime factorization application was
done by repeated subtraction. To compute /Q A B= and

%R A B= the divisor B was first negated and repeatedly added
(i.e. subtracted) from the dividend A in the accumulator. As long
as the result was positive, the quotient was incremented by the
ISZ instruction.

 cla // Clear Accumulator

 dca Q // clear Q

 tad B // load B (divisor)

 cia // negate

 dca MB // store at MB (minus divisor)

 tad A // load A (dividend)

L2, tad MB // subtract divisor

1 The PDP-8 had an optional Extended Arithmetic Element (EAE)

which did multiplication and division in hardware which was
not implemented on the PDP-8simulator.

 spa // Skip on Positive Accumulator

 jmp L3 // else exit loop

 isz Q // increment Quotient

 jmp L2 // loop: note Q > 0

L3, tad B // restore remainder

 dca R // store AC to remainder

Since multiplication and division by ten is needed to read and
write decimal integers, I/O was done in octal. Given a 12 bit
unsigned octal integer, you left rotate the number three bits so the
leading octal digit is in the lower three-bit of the accumulator,
mask out the upper 9 bits, convert to ASCII by adding 48 decimal
and print the ASCII character. The code given below does this
using the ISZ-JMP configuration to loop 4 times. (The variables
m4, mask, and p48 contain the constants -4, 07(octal) and +48
respectively; the PDP-8 did not support immediate mode
addressing.)

 cla cll // clear AC and Link

 tad m4 // load -4

 dca cnt // store in loop counter

L4, cla cll // clear AC and Link

tad number // load number

 cll ral // left rotate

 szl

 iac

 cll ral // left rotate

 szl

 iac

 cll ral // left rotate

 szl

 iac

 dca number // store it

 tad number // load it

 and mask // mask out upper 9 bits

 tad p48 // add 48 to convert to

 // ASCII

 jms TYPE // call the type

// subroutine to display

 isz cnt // loop control

 jmp L4

The non-MRI Rotate Accumulator Left (RAL) instruction actually
rotates the Link/Accumulator pair (a.k.a. rotate left with carry). To
rotate the accumulator alone you had to CLear the Link bit (CLL)
and then rotate left (when CLL and RAL instructions were
combined the clear was executed before the rotate) then test the
link bit using the Skip on Zero Link (SZL) instruction to skip over
the Increment ACcumulator (IAC) instruction which would
otherwise set the right most bit of the accumulator which was
cleared by CLL RAL. A little reflection shows that if the left most

bit of the accumulator was initially set or cleared, the right most
bit of the accumulator was subsequently set or cleared.

Printing the ASCII digit in the accumulator was done by a
subroutine call (JMS) of the TYPE routine which had been
previously written.

At this point the strengths and weaknesses of the PDP-8 are
apparent. While it is possible to accomplish anything with a very
limited instruction set, it takes a lot of very clever and intricate
coding to do so.

3. THE ARC – A RISC COMPUTER
In their textbook Computer Architecture and Organization: An
Integrated Approach [2] authors Murcocca and Heuring introduce
a very nice architecture/assembler called the ARC (A Risc
Computer) which is based on the SPARC architecture. There is
also a simulator which can be used to edit, assemble and execute
simple ARC assembler programs.

The ARC is a 32-bit load and store architecture with thirty-two
32-bit registers (%r0 through %r31) with register %r0 being
permanently wired to 0. Like the PDP-8, instructions are fixed
length. Memory access is restricted to a register load instruction
(ld) and a register store (st) instruction. Calculations are done in
registers, all arithmetic and logical operations have three
operands: two source and one destination. Thus a simple c = a + b
instruction is implemented as

 ld [a], %r1 ! $r1 <- a

 ld [b], %r2 ! %r2 <- b

 add %r1, %r2, %r3 ! %r3 = a + b

 st %r3, [c] ! c <- %r3

Note the left to right data flow. Since register %r0 is hardwired to
0, any result written to %r0 is thrown away. Register %r0 is also
used to implement immediate mode addressing when registers can
be initialized to hold small values (see below). Arithmetic and
logical operations can either set or not set condition codes
(addcc vs add; subcc vs sub). Conditional branching is done
by testing the condition codes so for example bl will branch if
the condition codes indicate a less than zero result. Unlike the
PDP-8 there is no counting loop instruction (i.e. ISZ); instead a
register containing the count is decremented until 0 is reached
(see below).

The ARC simulator does not support a division (or multiplication)
operation so as with the PDP-8 division is implemented in
software. However, the richer instruction set of the ARC allows
division to be implemented using the “standard” shift, test and
restore algorithm (see Murdocca and Heurling [2] p. 71). In the
code below register %r1 holds the divisor, %r2 holds the
remainder, %r3 holds the dividend/quotient and %r4 is the loop
counter (initialized to 32). A double register left shift shifts the

bits of the dividend into register %r2 where it is tested against the
divisor. If subtraction of the divisor results in a positive value the
least significant bit of %r3 (quotient) is set.

 xor %r2,%r2,%r2 ! clear R

 add %r0,32, %r4 ! init loop counter

d1: addcc %r3,%r3,%r3 ! left shift

 add %r2,%r2,%r2 ! %r2 - %r3 pair

 bcc d2 ! branch on carry clear

 add %r2,1 ,%r2 ! %r2 <- carry

d2: subcc %r2,%r1,%r0 ! test if

 bl d3 ! %r1 � %r2

 sub %r2,%r1,%r2 ! if yes subtract

 add %r3,1, %r3 ! & set lsb of Q

d3: subcc %r4,1, %r4 ! decrement %r4

 bg d1 ! loop if > 0

It is instructive to study the nuances in the four lines of code
needed to left shift the double register pair %r2-%r3. Left shifts
of %r3 and %r2 are done using addcc and add respectively. If
a carry into %r2 is needed, the branch on carry clear (bcc)
instruction is not taken and 1 is added to %r2.

4. THE JAVA BYTE CODE SIMULATOR
Although the prime factorization application can be completely
implemented on each architecture/simulator, the approach taken
was to code those parts of the application which best exhibit some
feature of a particular architecture. Because reading and writing
decimal integers requires multiplication and division by ten which
neither the PDP-8 nor the ARC simulators support in hardware,
I/O of decimal integers not done. This is reserved for the Java
Byte Code simulator which has built-in multiplication and
division instructions.

The idea for a Java Byte Code simulator came from Tanenbaum’s
Structured Computer Organization 4th Ed. [6] where he
introduces a micro-architecture simulator which implements a
subset of Java Byte Code. Based on this, I wrote my own
simulator which expanded the Java Byte code instruction set to
include integer multiplication, division and modulo operations as
well as including two non-standard I/O operations used by
Tanenbaum: IN which pushes the next byte from the input buffer
onto the stack and OUT which pops the byte on top of the stack to
the output buffer (where it is subsequently displayed). This made
the coding of decimal integer read and write routines fairly easy to
do.

A stack architecture has no registers; instead the 32-bit operands
are assumed to be on the stack and any results from an operation
are automatically pushed back onto the stack. With implicit
operands many instructions consist of a single byte length op-code
making the instruction stream very compact; instructions are
variable length ranging from one to three bytes.

References to memory are restricted to the push and pop
operations iload and istore (the i is for integer). Hence
writing assembler for the Java Byte Code engine has somewhat
the feel of writing code for the load and store ARC. Since stack
order is important there is a swap operation to reverse the two
top items on the stack. Conditional branching is done by testing
the top of the stack but since this pops the top of the stack, a dup
(duplicate) operation is needed to make a copy first. A bipush
(byte integer push) operation is used to push small integer
constants onto the stack.

A good demonstration of the advantages of a stack architecture is
seen in the way an unsigned decimal integer is displayed. The
standard approach to output a decimal integer is to use repeated
modulo 10 and divide by 10 operations to extract each digit.
Given an integer you modulo by 10 to extract the digit then divide
by 10 and go again with the result until zero is reached. For
example 173%10 is 3 and 173/10 and 17. So after extracting the
least significant digit 3 you continue with the 17. As this
algorithm produces the digits in reverse order, a stack is needed to
re-reverse them which is easily done with the stack oriented Java
Byte Code architecture.

 iload number / push number on stack

 bipush 0 / push null to mark end

 swap / swap null & number

P0: dup / duplicate TOS

 bipush 10 / push 10

 irem / TOS = number % 10

 bipush 48 / push 48 = ASCII “0”

 iadd / add to convert to ASCII

 swap / bring number to top

 bipush 10 / push 10

 idiv / TOS = number / 10

 dup / duplicate TOS

 ifne P0 / if TOS � 0 goto P0

 pop / else done – throw out 0

P1: dup / duplicate TOS

 ifeq P2 / if TOS=0 goto p2 (done)

 out / output TOS

 goto P1 / loop

P2: pop / done - pop null

5. OTHER PROGRAM TECHNIQUES
Lack of space permits only mentioning some of the other
programming techniques which, due to architectural differences,
were implemented various ways on the four architectures. Since
the ARC and Intel 80x86 support indexed addressing, arrays were
easiest to implement on these two (although they can be
implemented on all four architectures). The same is true for
subroutines calls and parameter passing; both were easier to do on
the ARC and the Intel 80x86. The division algorithm on the ARC
was coded as a subroutine using pass by value in for the divisor

and dividend and pass by value out for the quotient and remainder
(as opposed to pass by reference). The mechanism of pass by
reference for out parameters was covered when the prime
factorization application was implemented on the Intel 80x86

6. THE INTEL 80x86
By the time the Intel 80x86 architecture was considered, all the
pieces of the prime factorization application had been
programmed on at least one of the three architectures.
Implementing the application on the Intel 80x86 mostly required
redoing the decimal integer read and write routines using a
register architecture and implementing subroutine calls and
parameter passing using pass by value and pass by reference
parameters. Thus the final assignment ran: In previous labs and
assignments you wrote programs that found all the prime divisors
of an integer. Write a similar program in Intel 80x86assembler
which does the same. Your program will prompt for and a read a
positive integer, find all the prime divisors and as each is found
store it in an array, then print out the contents of the array. Your
program should make efficient use of subroutines and parameter
passing.

7. SUMMARY
Assembler programming exercises are used to support and
demonstrate the computer architectures being studied in a
computer organization course. However as no one
architecture/assembler embodies all the architectural features one
would like to cover, I made use of four different
architectures/assemblers. To partially offset the added time needed
to learn the features (and idiosyncrasies) of each
architecture/assembler a common application (or parts of it) was
used for labs and assignments. Coding throughout course
proceeded like an incremental build with pieces of the application
being implemented on the architecture/assembler that best
demonstrated some particular architectural feature. A common
application reduced the burden of programming while at the same

time provided a convenient way to compare and contrast the
different architectures.

8. REFERENCES
[1] Levy, H. & Eckhouse, R. Computer Programming and

Architecture: The VAX (2nd Ed). Digital Press. (1989).

[2] Murdocca, M & Heuring, V. Computer Architecture and
Organization: An Integrated Approach. John Wiley & Sons.
(2007).

[3] Null, Linda and Lobur, Julia. The Essentials of Computer
Organization and Architecture. Jones and Bartlett. Sudbury
MA. (2003)

[4] Shelburne, Brian J. (2003). Teaching Computer Organization
using a PDP-8 Simulator ACM/SIGCSE Bulletin: Thirty-
Fourth SIGCSE Technical Symposium on Computer Science
Education (February 2003), 69-73

[5] Stallings, William. Computer Organization & Architecture:
Designing for Performance 6th Ed. Prentice Hall, Upper
Saddle River, NJ. (2003).

[6] Tanenbaum, Andrew A. Structured Computer Organization
4th Ed. Prentice Hall. Upper Saddle River, N.J. (1999).

[7] Warford, J. Stanley. Computer Systems 2nd Ed. Jones and
Bartlett. Sudbury MA. (2002).

[8] Wolffe, Greg, Yurcik, William, Osborn, Hugh, Holliday,
Mark, Teaching Computer Organization/ Architecture With
Limits Resources Using Simulators. SIGCSE Bulletin 34
(March 2002). 176- 180

[9] Special Issue on General Computer Architecture Simulators:
ACM Journal of Educational Resources in Computing
(JERIC) Vol 1. No 4. December 2001.

[10] Special Issue on General Computer Architecture Simulators:
ACM Journal of Educational Resources in Computing
(JERIC) Vol 2. No 4. March 2002.

