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How the ENIAC took a Square Root  
revised 01/19/2009 

 

Abstract: The ENIAC (Electronic Numerical Integrator and Computer) is the world's first 
electronic computer. However it could only store twenty 10-digit decimal numbers and was 
programmed by wiring the computational units together. These limitations made it very unlike 
today's stored-program computers. The ENIAC had hardware to add, subtract, multiply, divide 
and take a square root. This last operation is interesting since computers normally don't do 
square roots in hardware. So given the limited capabilities of the ENIAC, how did it take a 
square root? 

 

History: The ENIAC was a war time effort by the University of Pennsylvania's Moore School 
of Electrical Engineering for the Army's Ballistics Research Lab at Aberdeen Maryland. Its 
purpose was to compute "firing tables" for artillery, information that gunners would use to 
properly aim and fire their guns. During World War II such computational work for firing tables 
was being done using the Moore School's Differential Analyzer, an analog device that could 
solve differential equations. 1942 John Mauchly, a physics professor working at the Moore 
School who had a long time interest in scientific computing, submitted a proposal for using 
vacuum tube devices for high speed computing. Discussions with J. Presper Eckert, graduate 
student at the Moore School, convinced him that such a devices was possible. In 1943 when the 
need for more firing tables became more acute, Mauchly's proposal was brought up with the 
result that the army awarded a contract to the Moore School to build what we know today as the 
ENIAC. Mauchy was the principal consultant and Eckert the chief engineer. Work on ENIAC 
began in the summer of 1943 but the ENIAC was not completed until the after the war ended; the 
ENIAC was officially unveiled in February 1946. 

 

Overview of the ENIAC: The ENIAC was "build" around twenty 10 decimal digit 
Accumulators which could add and subtract at electronic speeds. To add or subtract two 
numbers, the contents of one accumulator was sent to a second. Accumulators could "receive" a 
number, transmit its contents "additively" (for addition) or transmit "subtractively" (for 
subtraction). The ENIAC was capable of performing 5000 additions/subtractions per second!  

An accumulator contained ten decade counters. Each decade counter (designed by Eckert) was a 
ten state circuit that could store a single decimal digit much like a ten position "counter wheel" 
from a mechanical calculator. An electronic "pulse" (a "square wave") would advance the decade 
counter one position. Digits were sent as a "train of pulses" so if a decade counter was in the "4" 
state, upon receiving a train of 3 pulses it would advance to the "7" state. If it received a train of 
8 pulses it would advance with "wrap-around" to the "2" state and while generating a "carry- 
pulse" to the next decade. Subtraction was done by using 9 complement digits (i.e. -7 was sent as 
9 - 7 = 2 pulses) with an extra pulse added to the units digit (essentially tens-complement 
notation). The ten digit "pulse trains" plus a sign "pulse" were sent over eleven parallel wires. An 
eleventh two-state plus-minus counter was used for the sign.  
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The ENIAC also had a high-
speed Multiplier unit for 
multiplication. The Multiplier 
contained the logic to 
multiply a ten digit number 
by a single digit to obtain a 
partial product. The partial 
products were then added 
together (using accumulators) 
to obtain the final product. 
The Multiplier made use of 
four accumulators to multiply 
(six for a 20 digit product).  

The final computational unit 
was a Divider/Square Rooter. Division and taking a square root was orchestrated as a series of 
subtractions/additions and shifts which like the Multiplier made use of a number of accumulators 
but unlike the Multiplier contained no special computational hardware to do either; in other 
words it used accumulators to do the needed addition and subtraction. All work was done in 
decimal. Division was done by repeated subtractions followed by repeated additions etc. using a 
technique called "non-restoring division". As we shall see taking a square root used a similar 
technique which is probably why the two operations were combined in one unit.  

Input Output was provided by a mechanical IBM card Reader and card Punch which were 
connected to an electronic Constant Transmitter used to stored constants. The Constant 
Transmitter provided the interface between the slow-speed mechanical I/O devices and the rest 
of the high-speed electronic ENIAC. There were also three Function Table units, essentially 
100 by 10 digit ROM memories which were set by switches.  

The units of the ENIAC were connected by two buses: a data bus used to transmit the "ten digits 
plus sign" over parallel wires and a control bus. Program control for the ENIAC was distributed, 
not centralized. Each accumulator contained control logic that would allow it to "work" with 
other accumulators to perform a sequence of calculations. Programming was accomplished by 
setting switches on the various units and wiring the connections between them using the control 
bus for control signals and the data bus for data. A Master Control unit was used to "loop" the 
various sequence of calculations set up between accumulators. A Cycling Unit synchronized the 
various units over a third cycle bus (not shown above). There was also an Initializing Unit.  

The ENIAC did not use a "fetch-decode-execute" cycle to execute its program since there was no 
memory to store instructions. And the ENIAC was not "programmed" using paper tape unlike 
Zuse's Z3 (a device unknown to Mauchly and Eckert) or Aiken's Automatic Sequence Controlled 
Calculator (Harvard Mark I) completed in the summer of 1944, both of which read their 
instructions from paper tape readers. The reason for not using paper tape readers was the slow 
speed of such mechanical devices. If the ENIAC was to be truly fast, both instructions and 
calculations had to be executed at electronic speeds. The only way to effectively do the former 
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was to "wire" the program into the machine. The idea was not completely new; IBM punch card 
equipment could be programming in a limited way using plug boards.  

All of this was packaged into 40 panels each 2 feet wide by 8 feet high arranged in a U shape in a 
30 by 60 foot area. A diagram of the ENIAC from the "ENIAC Progress Report" of June 30, 
1945 can be seen <click here>. 

 

A Method for Taking a Square Root  

The method used by the ENIAC Square Rooter to take a square root required only addition and 
subtraction. It was based on the formula that the sum of the first n  odd integers is 2n squared.  

21 3 5 ... (2 1)n n+ + + + − =  

To calculate the square root of m , find the smallest integer n such the sum of the first n odd 
integers exceeds m . This can be done by subtracting the consecutive odd integers from m until a 
negative result is obtained. If n is the smallest integer such that ( )( )1 3 5 ... 2 1 0m n− + + + + − <  

then ( )2 21n m n− ≤ <  or 1n m n− ≤ < . If a  is the thn odd integer 2 1n − , then 
1

2
a

n
+=  so  

1 1
2 2

a a
m

− +≤ <  

Example: To estimate the square root of 7251, subtract the consecutive odd integers until a 
negative result is obtained. Calculate ( )7251 1 3 5 ... 169 26− + + + + =  and 

( )7251 1 3 5 . 171.. 145− + + + + = − . So 171a = . Thus  

1 1
85 725

171 171
1 86

2 2
− += ≤ < =  

Aside: In comparing the magnitudes of 26 and -145 observe that 85 is the closer approximation. 
Using linear interpolation, 26/171 = 0.1520 a better approximation, 85.152 can be obtained.  
Note 7251 85.15280≈ .  

End of Example  

Additional precision is possible if m is first multiplied by 100k for some integer k. Calculate  
the square root of 100km× then divide by 10k . For example multiply 7251 by 1002 to obtain 
72,510,000 and take the square root using the above technique. 
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( )72,510,000 1 3 5 . 17031.. 12256 0− + + + + = − <  

So  
1

8515 72,150,000
17031 1703

8516
2 2

1− = ≤ < =  which after dividing by 210  yields 

85.15 7251 86.16≤ < .  

Reality Check: The ENIAC could do 5000 additions/subtractions per second. Therefore to 
subtract 8516 odd integers would take 1.7 seconds!  This is not a very efficient way to find the 
square root.  

 

A More Efficient Approach  
 
The above algorithm can be made more efficient. For example, 7251  can be found to four 
digits of accuracy using no more than 40 additions/subtractions instead of over 8000 if we 
calculate its square root one digit at a time.  

First of all since 7251is on the order of 2100 , we’ll calculate 27251 100 72,510,000× =  since 

72,510,000  is an integer on the order of 4100 . (The general rule of thumb to calculate m to k 
digits of accuracy is to scale m to an integer on the order of100k ). 

Begin by finding the smallest odd integer n such that ( )( ) 11 3 5 ... 2 1 100 0km n −− + + + + − × < . 

Observe that ( )2 1 19n − ≤ since ( )1 3 5 ... 19 100+ + + + = and m is on the order of (actually 

bounded by)100k . Therefore ( )2 1 2 11 100 100k kn m n− −− × ≤ < × and so 

( ) 1 11 10 10k kn m n− −− × ≤ < ×  which is not a very good estimate.  

Example: ( ) 3 272,510,000 1 3 5 ... 17 100 849 100 0− + + + + × = − × <   Therefore 

3 38 10 72,510,000 9 10× ≤ < ×  

Observe that the last value subtracted was ( )3 217 100 1700 100× = ×  

End of Example 



5 
 

The last odd multiple of 1100k − subtracted from m above was ( ) 22 1 100 100kn −− × ×� �� � . 

( )2 1 100n − × , an odd multiple of 100, can be rewritten as a sum of ten consecutive odd 
integers1.   

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 100 200 1 100 10 20 1 1 3 5 ... 19

20 1 1 20 1 3 20 1 5 ... 20 1 19

n n n

n n n n

− × = × − + = × − + + + + +� �� �

− + + − + + − + + + − +� � � � � � � �� � � � � � � �
 

Letting ( )2 1 100N n= − × , we can express this as follows.  

( )2 1 100 9 7 ... 7 9
10 10 10 10
N N N N

N n � � � � � � � �= − × = − + − + + + + +� � � � � � � �
	 
 	 
 	 
 	 


 

 Example continued: 1700 161 163 ... 177 179N = = + + + +   End 

Starting with the last term 9
10
N� �+� �

	 

subtract consecutive terms until the expression becomes 

positive. Subtract out the last term added in, 
10
N

j� �+� �
	 


 for j  odd and 9 9j− ≤ ≤ making j  the 

smallest odd integer such that  

( )
1

1 2 2 2

1

2 1 100 9 100 7 100 ... 100 0
10 10 10

n
k k k k

i

N N N
m i j

−
− − − −

=

� �� � � � � �− − × + − × + − × + + + × <� � � � � �� �
	 
 	 
 	 
	 


�  

The expression being subtracted out is the sum the odd integers from 1 to 
10
N

j� �+� �
	 


times 2100k − . 

Hence it is a square.  

Example continued: ( )2 2 2849 100 179 177 175 173 171 100 26 100 0− × − + + + + × = × >  so if we 

subtract out the last term added back in, ( ) 2171 100× , we now have   

( )2 27251 100 1 3 5 ... 171 100 0× − + + + + × <  

Therefore ( ) ( )2 21 3 5 ... 169 100 72,510,000 1 3 5 ... 169 171 100+ + + + × ≤ < + + + + + × . 

Consequently 2 2 2 2171 1 171 1
10 85 10 72,510,000 86 10 10

2 2
− +× = × ≤ < × = ×  

End of Example 

                                                 
1 In particular 100 is the sum of the odd integers 1 3 5 ... 19+ + + +  
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If 
10
N

j� �+� �
	 


for j odd and  9 9j− ≤ ≤  then 
10
N

j� �+� �
	 


is the 
1

20 2
N j +� �+� �

	 

th odd integer.  

Example: For 1700N = , and 1j =  
1700

1 171
10

� �+ =� �
	 


is the 
1700 1 1

86
20 2

+� �+ =� �
	 


th odd integer 

Resetting n to equal 
10
N

j� �+� �
	 


 we have 

( )( ) ( ) ( )( )2 21 3 5 ... 2 3 100 1 3 5 ... 2 3 2 1 100k kn m n n− −+ + + + − × ≤ < + + + + − + − ×  

Note that the last value subtracted was ( )( ) 32 1 100 100kn −− × ×  

At this point we repeat the process.  

Example:  2 272,510,000 (1 3 5 ... 171) 100 145 100 0− + + + + × = − × <  

( ) 17100 17100 17100
171 100 100 9 100 7 100 ... 9 100

10 10 10

1701 100 1703 100 ... 1717 1719 100

� � � � � �� � � � � �× × = − × + − × + + + × =� � � � � �� � � � � �
	 
 	 
 	 
	 
 	 
 	 


× + × + + + ×

 

Adding back the odd integers in reverse order starting from 1719  we observe  

( )( )272,510,000 (1 3 5 ... 169) 100 1719 1717 1715 ... 1701 100 899 100 0− + + + + × + + + + + × = × >  

and 

( )( )272,510,000 (1 3 5 ... 169) 100 1719 1717 1715 ... 1703 100 804 100 0− + + + + × + + + + + × = − × <  

Thus   
1703 1 1703 1

10 8510 72,510,000 8520 10
2 2

− +× = ≤ < = ×  

 where     1703 is the 852nd odd integer 

and   ( )72,510,000 1 3 5 ... 1703 100 80400 0− + + + + × = − <  
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So 

 
170300 170300 170300 170300

1703 100 9 7 ... 7 9
10 10 10 10

17021 17023 ... 17037 17039

� � � � � � � �× = − + − + + + + + =� � � � � � � �
	 
 	 
 	 
 	 


+ + + +
 

Adding back the odd integers in reverse order starting from 17039 we observe 

( )( )72,510,000 (1 3 5 ... 1703) 100 17021 17023 17025 ... 17029 4775 0− + + + + × + + + + + = >  

And 

( )( )72,510,000 (1 3 5 ... 1703) 100 17021 17023 17025 ... 17031 12256 0− + + + + × + + + + + = − <  

Thus   
17031 1 17031 1

8515 72,510,000 8516
2 2

− += ≤ < =  

All this was done in less than 40 additions/subtractions 

End of Example 

 

Reality Check: With a reduction of the number of additions/subtractions to around 40, the 
ENIAC could now calculate the square root in approximately 0.008 seconds.  

 

How this Algorithm was Implemented on the ENIAC  

On the ENIAC the hardware to take a square root was combined with the divider since the 
sequence of operations used is similar to those used to divide (a non-restoring division technique 
was used). Taking a square root was done using a couple of accumulators to execute the series 
of subtractions and additions discussed. The divider/square rooter essentially orchestrated the 
sequence of steps needed. Unlike the high-speed multiplier unit the divider/square rooter 
contained no special circuits to perform arithmetic.  

The square rooter actually performed calculations to obtain twice the square root. To obtain 
2 m , the value m  was deposited to an accumulator which we shall call the numerator. Then a 
second accumulator, the denominator, was initialized to 108 (1004) by setting the 9th digit to 1.  
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For example, to calculate twice the square root of 72,510,000 two accumulators were initialized 
as follows  

    Numerator:  0,072,510,000            Denominator:  0,100,000,000  

Step 1: Subtract increasing odd multiples of 108 (1004) from the numerator until a negative result 
is obtained.  

The denominator was subtracted from the numerator and the denominator was incremented by 2 
in the 9th digit. This was repeated until there was a sign change in the numerator. Note that the 
denominator is incremented after the subtraction but before the sign of the numerator is tested so 
that the contents of the denominator is not the last value subtracted!  

    Numerator: -0,027,490,000            Denominator:  0,300,000,000  

At this point we know that 41 100 0m − × < . If N was the last denominator value subtracted2 then  

1 1 1 19 100 7 100 ... 7 100 9 100
10 10 10 10

k k k kN N N N
N − − − −� � � � � � � �= − × + − × + + + × + + ×� � � � � � � �

	 
 	 
 	 
 	 

 

where 4k = . So 39 100
10
N� �+ ×� �

	 

was the last odd multiple of 1003 subtracted out. Therefore 

starting with this value add back the decreasing sequence of odd multiples of 1003 until a sign 
change is obtained. If the denominator contained 3100N × , 

    Numerator: -0,027,490,000            Denominator(?):  0,100,000,000 

 the value to be added back could be obtained by right shifting the denominator and setting the 
7th position to 9.  

    Numerator: -0,027,490,000            Denominator(?):  0,019,000,000  

However, this was not done by the ENIAC square rooter! The ENIAC could accomplish the 
same purpose by left shifting the numerator instead of right shifting the denominator and setting 
the 8th digit to 9 instead of the 7th digit. This scaling trick would also eventually add 4 digits of 
accuracy to the final answer.  

    Numerator: -0,274,900,000            Denominator(?):  0,190,000,000  

                                                 
2 In the previous section we set  N equal to ( )2 1 100n − × where ( )2 1n − was the thn odd integer and showed  

1 1100 9 7 ... 7 9 100
10 10 10 10

k kN N N N
N − −� �� � � � � � � �× = − + − + + + + + ×� �� � � � � � � �

	 
 	 
 	 
 	 
	 

 

However, in this section it’s better to define N to be ( )2 1 100kn − × . The calculations are very similar. 
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But there was one further complication! The denominator contains the wrong value since it was 
incremented by 2 before the sign of the numerator was tested. So instead of setting the 8th digit 
to 9, it subtracts 11 from the 9th and 8th digits  

    Numerator: -0,274,900,000            Denominator:  0,300,000,000  
                                         Denominator:  0,190,000,000    

 after subtracting 11  

Step 2: Add back!  

Add the denominator back into the numerator and decrement the denominator by 2 in the 8th 
digit until a sign change is obtained (numerator is positive).  

    Numerator: -0,274,900,000            Denominator:  0,190,000,000  
               -0,084,900,000                          0,170,000,000  
                0,085,100,000                          0,150,000,000  

Note that 0,170,000,000 not 0,150,000,000 was the last value added back. If 
( )2 1 100kN n= − × was the last odd multiple of 100k added back, since N can be expressed as the 

sum of ten odd multiples of 1100k − , then 19 100
10

kN −� �− ×� �
	 


was the last (smallest) odd multiple of 

1100k −  added back. Beginning with 19 100
10

kN −� �− ×� �
	 


 subtract the increasing sequence of odd 

multiples of 1100k − until a sign change is obtained (to negative). The ENIAC accomplished this 
by left shifting the numerator, not right shifting the denominator, and adding 11 to the 8th and 
7th digits instead of subtracting 9 from the 7th digit since the numerator was smaller by 2 in the 
8th digit (smaller by 20 in the 9th and 8th digits) .  

    Numerator:  0,851,000,000            Denominator:  0,161,000,000  
   

At this point repeat alternately subtracting/adding the denominator from/to the numerator and 
incrementing/decrementing the denominator by 2 in the thp position until a sign change in the 
numerator is obtained. When the repeated subtraction/addition sequence terminates with a sign 
change, left shift the numerator, subtract/add 11 to the p and p-1st positions in the denominator, 
and decrement p.  

Step 3: Subtract  

                                                           P=7  
                                         Denominator:  0,150,000,000 
                                                 add      11 
    Numerator:  0,851,000,000            Denominator:  0,161,000,000  
                 ...                                    ...  
               -0,145,000,000                          0,173,000,000  
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Step 4:  Add Back  

                                                             P=6 
                                         Denominator:  0,173,000,000 
                                             subtract      1,1  
    Numerator: -1,450,000,000            Denominator:  0,171,900,000  
                 ...                                    ...  
                0,089,900,000                          0,170,100,000  

Step 5: Subtract  

                                                              P=5 
                                         Denominator:  0,170,100,000 
                                                 add         11  
    Numerator:  0,899,000,000            Denominator:  0,170,210,000  
                 ...                                    ...  
               -0,122,560,000                          0,170,330,000  

Step 6: Add Back  

                                                               P=4 
                                         Denominator:  0,170,330,000 
                                             subtract         11  
    Numerator: -1,225,600,000            Denominator:  0,170,319,000  
                 ...                                    ...  
                0,136,896,000                          0,170,303,000  

Step 7: Subtract  

                                                                 P=3 
                                         Denominator:  0,170,303,000 
                                                 add           1,1  
    Numerator:  1,368,960,000            Denominator:  0,170,304,100  
                 ...                                    ...  
               -0,163,784,100                          0,170,305,900  

Step 8: Add Back  

                                                                   P=2 
                                         Denominator:   0,170,305,900 
                                             subtract             11      
    Numerator: -1,637,841,000            Denominator:   0,170,305,790  
                 ...                                     ...  
                0,065,216,000                           0,170,305,590  
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Step 9: Subtract  

                                                                    P=1 
                                         Denominator:   0,170,305,590 
                                                 add               11 
    Numerator:  0,652,160,000            Denominator:   0,170,305,601  
                0,481,854,399                           0,170,305,603  
                0,311,548,796                           0,170,305,605  
                0,141,243,191                           0,170,305,607  
               -0,029,062,416                           0,170,305,609  

The last odd integer subtracted was a = 170,305,607 which made the numerator negative, Thus 
after scaling we have  

17,030.5606 2 72,510,000 17,030.5608≤ × <  

However, since the denominator was decremented by two after the final subtraction was 
performed, the last value in the denominator, 170,305,609 must have been used as the 
approximation to twice the square root. So after scaling 

2 7, 2510,000 17,030.5609× ≈  

If you compare the magnitudes of the last two numerator values, 141,243,192 and -29,062,416, 
the better approximation would be obtained from 170,305,607 (or 170,305,609) instead of 
170,305,605. The ENIAC square rooter had an optional round off mechanism. It left shifted the 
numerator one more time and then added/subtracted the denominator 5 times from it depending 
on whether the denominator was previously decremented/incremented. If there is no sign change 
the last position in the doubled root was incremented or decremented by 2. Thus  

    Numerator: -0,290,624,160            Denominator:  0,170,305,609  

    Numerator:  0,560,903,885   <- sign change!  

Since there is a sign change, 17,030.5609 is the best approximation for the doubled square root. 
The decimal point is between the 4th and 5th positions so the doubled root is approximately 
17,030.5609.  

 

This method also works for small numbers. Here we demonstrate how the ENIAC would take the 
square root of 2 an accuracy of 4 digits below the decimal point.  

Step 1: Subtract increasing odd multiplies of 108 from the numerator until a negative result is 
obtained. Remember that the ENIAC always increments the denominator by 2 in the p = 9th digit.  
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                                                        P=9 
   Numerator:  0,000,000,002            Denominator:  0,100,000,000  
              -0,099,999,998                          0,300,000,000  

Step 2: Left shift the numerator and subtract 11*107 from the denominator. Add back decreasing 
odd multiples of 107 to the numerator until a positive result is obtained.  

                                                          P=8 
                                         Denominator:  0,300,000,000 
                                             subtract    11    
    Numerator: -0,999,999,980            Denominator:  0,190,000,000  
                 ...                                    ...  
                0,000,000,020                         -0,010,000,000  

Step 3: Left shift the numerator and add 11*106 to the denominator. Subtract increasing odd 
multiples of 106 from the numerator until a negative result is obtained.  

                                         
                                                           P=7 
                                         Denominator: -0,010,000,000 
                                                 add      11    
    Numerator:  0,000,000,200            Denominator:  0,001,000,000  
               -0,000,999,800                          0,003,000,000  

Step 4: Left shift the numerator and subtract 11*105 from the denominator. Add back decreasing 
odd multiples of 105 to the numerator until a positive result is obtained.  

                                                             P=6 
                                         Denominator:  0,003,000,000 
                                             subtract      1,1    
    Numerator: -0,009,998,000            Denominator:  0,001,900,000  
                 ...                                    ...  
                0,000,002,000                         -0,000,100,000  

Step 5: Left shift the numerator and add 11*104 to the denominator. Subtract increasing odd 
multiples of 104 from the numerator until a negative result is obtained.  

                                                              P=5 
                                         Denominator: -0,000,100,000 
                                                 add         11    
    Numerator:  0,000,020,000            Denominator:  0,000,010,000  
                 ...                                    ...  
               -0,000,020,000                          0,000,050,000  
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Step 6: Left shift the numerator and subtract 11*103 from the denominator. Add back decreasing 
odd multiples of 103 to the numerator until a positive result is obtained.  

                                                               P=4 
                                         Denominator:  0,000,050,000 
                                             subtract         11    
    Numerator: -0,000,200,000            Denominator:  0,000,039,000  
                 ...                                    ...  
                0,000,004,000                          0,000,027,000  

Step 7: Left shift the numerator and add 11*102 to the denominator. Subtract increasing odd 
multiples of 102 from the numerator until a negative result is obtained.  

                                                                 P=3 
                                         Denominator: -0,000,027,000 
                                                 add           1,1    
    Numerator:  0,000,040,000            Denominator:  0,000,028,100  
                 ...                                    ...  
               -0,000,016,400                          0,000,028,500  

Step 8: Left shift the numerator and subtract 11*101 from the denominator. Add back decreasing 
odd multiples of 101 to the numerator until a positive result is obtained.  

                                                                  P=2 
                                         Denominator:  0,000,028,500 
                                             subtract            11    
    Numerator: -0,000,164,000            Denominator:  0,000,028,390  
                 ...                                    ...  
                0,000,006,040                          0,000,028,270  

Step 9:  Left shift the numerator and add 11 to the denominator. Subtract increasing odd integers 
from the numerator until a negative result is obtained.  

                                                                   P=1     
                                        Denominator:  -0,000,028,270 
                                                 add              11    
    Numerator:  0,000,060,400            Denominator:  0,000,028,281  
                0,000,032,119                          0,000,028,283  
                0,000,003,836                          0,000,028,285  
               -0,000,024,449                          0,000,028,287  

Thus twice the square root of 2 is between 2.8284 and 2.8286 though we use the value 2.8287 for 
twice 2 . If we round off by left-shifting the numerator the adding the denominator five times 
to the numerator we do not get a sign change so subtract two from the denominator and use 
2.8285 as our best approximation to 2 2× . Note that . 2.8285/2 = 1.41425 agrees favorably 
with 2 1.414213562≈ .  
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Summary: To my knowledge, only two of the "early" computers ever implemented a square 
root operation in hardware: Zuse's Z3 and the ENIAC both of which had limited memory and/or 
programming capabilities. In the "First Draft of the Report on the EDVAC" written in 1945, von 
Neumann incorporates the design for a square rooter (which von Neumann notes is similar to the 
"divider network"). Yet in his later 1946 paper "Preliminary discussion of the logical design of 
an electronic computing instrument" which von Neumann authored with Arthur Burks and 
Herman Goldstine, he leaves out the design of a square rooter "because such a device would 
involve more equipment than we feel desirable in first model". Hardware was expensive in the 
early computers and designs reflected a "keep it simple" philosophy. (I should point out that 
neither the EDVAC or the EDSAC, computers which were heavily influenced by the "First 
Draft" paper, had a square root operation. And neither did the IAS machine which was  
influenced by the "Preliminary discussion" paper or the EDSAC at Cambridge University. 
Besides, the increased memory capacity and the flexibility of programming found in later stored 
program computers allowed square roots to be easily done in software. The Z3 and ENIAC were 
not stored program computers.  

So given that square roots are hard to compute (how many of us can take one by hand?), how did 
a relatively primitive computer like the ENIAC take a square root? The ENIAC implemented a 
well known square root algorithm that could be carried out by anyone with desk calculator with 
addition, subtraction, and shift capabilities. Since the ENIAC was very good at addition and 
subtraction (it had 20 accumulators that could do both at electronic speeds), taking a square root 
turned out just to be a matter of sequencing their operations in the correct way.  

 

Additional Links  

1946 Technical Report on The ENIAC:  http://ftp.arl.army.mil/~mike/comphist/46eniac-report 
This is the first four chapters of the June 1, 1946 Report on the ENIAC. Excellent primary source 
material from the U.S. Army Research Laboratory at the Aberdeen Proving Grounds, MD.  

History of Computing Information:  http://ftp.arl.army.mil/~mike/comphist: web page with other 
links to ENIAC materials also maintained at the ARL at Aberdeen  
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edited by R. Rojas and U. Hashagen: This paper contains many of the technical details of the 
ENIAC. The square root algorithm was obtained from this source.  

 
   
   
   
   


