1. 2. The 19t century saw an emphasis on mathematical rigor with mathematicians like
Cauchy and Weierstrass rigorously defining mathematical concepts like limit,
continuity, etc. which resulted in a flood of pathological (?) functions testing these
definitions.

3. Out of this milieu comes one of my favorite “that’s funny” result in mathematics:
the existence of a function on the domain (0,1) which is continuous at all irrational
points and discontinuous at all rational points (while no function seems to exist which
is the other way around):

Flx)= %ifﬁ% ged(p,@) =1

0 if xisirrational
Showing continuity at irrational points is a nicely done using a straight-forward 6 —¢
proof - demonstrating the power of the modern definition for limit and continuity.
Kudos to Cauchy and Weierstrass!

The &-€ proof of continuity at an irrational number x, uses the fact that for any € >0
and integer r where 1/r < € there are finitely many rational numbers p/q where g <r .
Let 6 > 0 be the minimal distance between x, and this finite set of rational numbers. If
q > r then |f(p/q) — 0|< 1/q < 1/r < €. In some sense irrationals x, avoid rational
numbers p/q with denominators greater than some integer r.

4. In 1874 Cantor proved the real numbers are non-denumerable. Given that the
rational numbers are countably infinite and the union of two countably infinite sets is
countably infinite, assuming the irrational numbers are countably infinite contradicts
Cantor’s result. In some sense there are more irrationals than rational numbers.

A superset of the rational numbers, the algebraic numbers, which are the roots of
polynomials with integer coefficients is also countably infinite, while its set
complement, the transcendental numbers, is non-denumerable. The infinite
countability of the algebraic numbers is based on the height of a polynomial with
integer coefficients. Specifically

H(anx" +a, x" +...+a1x+a0) = Zn:|ak|+n—1

5. Since the set of polynomials with integer coefficients wft_r(: a fixed height is finite, it’s
not difficult to show the algebraic numbers are also countably infinite. What makes
this asymmetry interesting is the difficulty in finding a transcendental number. In 1851
Liouville proved the number <

6. lO =;F

was transcendental using an inequality necessary for irrational algebraic numbers.
7. If xq is an irrational algebraic number with minimal degree polynomial p,(x) having
integer coefficients, then there is a positive number A such that if p/q is a rational

number in the interval [x,-1,%,+1] then
7
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That is, irrational algebraic numbers in some sense avoid rational numbers similar (?)
to irrational numbers avoiding (?) certain rational numbers (mentioned above). And if
for any algebraic number a, we define Hy(a) to be the height of the minimal degree
polynomial with integer coefficients for which a is a root, then the function

if xisalgebraic
h(x)= (o) el

0 if x is transcendental
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is continuous for all transcendental values of x and discontinuous for all algebraic
values of x using a proof is similar (?) to the one given above. 5.

8. A superset of the algebraic numbers are the computable numbers, numbers
whose digits can be generated by a Turing Machine even if the decimal expansion
(as in the case of mt) does not terminate. Turing’s Thesis states that any computation
that can be performed by some mechanical means (i.e. a computer) can be done by
a Turning machine. Since number of Turing Machine machines is countably infinite
(there is a method to encode them as strings of binary integers), the set of
computable numbers is countably infinite. Thus the remaining set of non-
computable numbers is non-denumerable and therefore in some sense non-
obtainable (?).




