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Introduction 

“Sire, there is no Royal Road to Geometry” – arr. Euclid 

There are poems which have mathematical themes, poems where mathematics is the inspiration for a 

poem: thus, from mathematics can come poetry. But why not reverse the process – why not view a poem 

as an entrée into mathematics?  

Manifold: poetry of mathematics (3: A Taos Press © 2021) by E R Lutken is a collection of 57 poems 

based on mathematics and/or mathematical themes. A subset of these poems, 27 in all, are the starting 

point for a series of 27 essays (mathematical riffs) based on that poem which explore and develop the 

mathematics, mathematical themes, and in some cases the history of mathematics as suggested by that 

poem. And then in turn mathematics can give deeper insight into the poem itself.  

The mathematics as addressed in some of the poems is obvious (some of the titles are numbers like -2, 

Zero, and π). Some poems have mathematical equations as subtitles which are suggestive. Others end 

with mathematical equations. Some deal with the fascination of mathematical objects. Some deal with 

famous theorems or results. Others poked fun at mathematicians. Some poems are a starting point for 

further mathematical development.  

There are a series of poems dealing with prime numbers. Another series considers numbers starting with 

the integers, through the irrational numbers, to the transcendental numbers and the computable numbers.     

So maybe while there is no Royal Road to geometry or mathematics, poetry may provide a less bumpy 

route.  

----------------------------------------------------------------------------------------------------------- 

Brian J. Shelburne is a retired Mathematics-Computer Science professor from Wittenberg University in 

Springfield OH. A firm believer in liberal arts education, he has a BS degree in mathematics from 

Davidson College (NC), an M.A. and Ph.D. in mathematics from Duke University, and an M.S. in 

Computer Science from UNC Chapel Hill. He has published papers on the history of computers and has 

self-published textbooks for courses he’s taught.  

 

E.R. Lutken grew up in the South with a family who loved music, poetry, and the outdoors (some of them 

also loved mathematics). She studied at Duke University and the University of Southwest Texas Medical 

School and completed her residency in family medicine. As a physician, Dr. Lutken worked first in urban 

emergency rooms and for a brief stint oversees, then for many years on the Navajo Nation. After that, she 

taught middle and high school science and mathematics and rural Colorado for several years. Now she 

spends her time reading, writing , messing around with math, playing music, and fishing in the swamps of 

Louisiana and the mountain streams of New Mexico.      
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https://en.wikipedia.org/wiki/Edmund_Clerihew_Bentley
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Fundamentals of Mathematics 
 

Clothes we put on a shaggy universe  

to make it behave, slick and comb its hair,  

button its collar and send it to church.  

 

Stack of bones extracted at autopsy,  

bleach-soaked, messy bits removed,  

arranged on a pedestal in the classroom,  

shellacked, perfectly articulated,  

clattering, ghoulish display.  

 

Tome of mind-scrambling spells,  

fanciful shapes teased from thin air,  

mazes, knots, rotating matrices,  

meandering möbius strips,  

rippling surfaces, Klein bottles.  

 

Book, bone, garb, trivial  

intersections with mortal perception.  

 

It is its own rough beast,  

roaming an unknowable territory, staring  

with omnichromatic vision through focal  

depths of countless glittering ommatidia,  

rambling amid tangles of helical strands  

and galactic filaments, wild variables  

crawling over its skin. It feasts on mushy  

stew of particle and wave, gravity, time,  

breathes in the spin of every lepton, laughs  

at notions of elegance, structure, wisdom,  

plays with axioms like toys.  

Secret, savage deity 

   - E R Lutken (3: A Taos Press © 2021) 
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The Universe, Science, and Mathematics 
 

“The miracle of the appropriateness of the language of mathematics for the formulation of the 

laws of physics is a wonderful gift which we neither understand nor deserve. We should be 

grateful for it and hope that it will remain valid in future research and that it will extend, for 

better or for worse, to our pleasure, even though perhaps also to our bafflement, to wide branches 

of learning.” – Eugene Wigner, The Unreasonable Effectiveness of Mathematics,  

 Communications in Pure and Applied Mathematics 13 (1960) 

 

The enormous usefulness of mathematics in the natural sciences is something bordering on the 

mysterious. - Eugene Wigner 

 

“Clothes we put on a shaggy universe 

to make it behave, slick, and comb its hair, 

button its collar and send it to church.” 

 

“All is Number” - Pythagoras 
 

In western thought the idea that mathematics (“Clothes”) was the key to understanding the 

“shaggy” universe has its documented origins with the Greek philosophers of the 5th and 6th 

centuries BCE. The Pythagoreans, the brotherhood founded by Pythagoras (ca. 570 – ca. 490 

BCE.), believed that “all was number” or “the substance of all things was number”. Their 

discovery that simple ratios like 2:1, 3:2, and 4:3 resulting in harmonic music intervals (an 

octave, a perfect fifth, a perfect fourth) reinforced this idea. But their approach to understanding 

the universe through number was a qualitative one and not quantitative one, the latter an 

approach to understanding that would not occur until the western Enlightenment in the 16th and 

17th centuries CE. For the early Greeks numbers had properties which were linked to the natural 

world somewhat along the line that 666 was the “number of the beast”.  

 

Consider the Pythagorean Tetractys (left), a triangular 

arrangement of 10 points arranged in four rows of 1, 2, 3 

and 4 points which can represent spatially a point (0 

dimension), a line (formed by 2 points – 1 dimension), a 

plane (triangle formed by 3 points – 2 dimensions) and a 

solid (a tetrahedron, a solid figure formed by 4 points in 3 

dimensions). Adjacent row ratios 2:1, 3:2, and 4:3 are the 

ratios for the musical octave, the perfect fifth, and the 

perfect fourth. The tetractys could also be linked with the 

four elements: fire, earth, air, and water.    
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In Plato’s dialog Timaeus (ca. 350 BCE), four of the five so-called Platonic regular solids, 

tetrahedron, cube, octahedron, and icosahedron are identified with the four elements fire, earth, 

air, and water respectively based on their geometric properties. (Note, the existence of only five 

regular solids was proved in Euclid’s Elements ca. 300 BCE as Prop. XIII.18.) 

 

 

 
 
 
 
 

 

 

 
  Tetrahedron    Cube         Octahedron        Icosahedron 

    (fire)      (earth)          (air)             (water)  

 

The Tetrahedron (4 sided) was identified with fire because it was “sharp” like fire. The Cube (6 

sided) was identified with earth because it was stable. The Icosahedron (22 sided) was water as it 

was the most “round” and therefore fluid like water. The Octahedron (8 sided) was air being 

somewhat between fire and water. Note that like the tetrahedron and the icosahedron, the 

octahedron had triangular sides. The shape of the mathematical object was identified with a 

property of that element.  

 

The 5th regular solid, the dodecahedron (12 sides), was assigned to the “universe” 

as a whole (which seems to me to be a bit of a “kluge”). It was identified with a 5th 

non-terrestrial element referred to as aether which made up the nonchanging  

heavens. 

 

Since the heavens were seen as perfect, the orbits of the planets were considered to be circles, a 

perfect shape. Motion was uniform, not varying - again, a qualitative application of 

mathematics used to describe nature consistent with the Aristotelian notion of 

describing the natural world in terms of qualities or causes, not quantities.  
                                                                                                                                                                 

  Dodecahedron 

  (aether) 
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From the Qualitative to the Quantitative 
 

The standard Ptolemaic geocentric system 

placed the earth at the center of the 

universe with the sun, moon, and the five 

known planets revolving around the earth 

in circular orbits (circular because the 

circle was seen as perfect as the heavens 

were perfect.)  Copernicus (1473-1543) 

proposed a simpler heliocentric model also 

using circular orbits and uniform motion 

of planets with the moon revolving around 

the earth and the earth and the five known 

planets revolving  around the sun. Its 

advantage (?) was that it provided a 

cleaner and simpler model though 

interestingly enough, the Copernican 

system was no more accurate than the 

Ptolemaic. Needless to say, the 

Copernican system did not immediately replace the Ptolemaic system.  

 

Today we understand that there were three fundamental flaws in understanding the motion of the 

planets: orbits were circular, motion was uniform, and the motion of a body required a force 

physically acting on it to move it (an outermost sphere enclosing the universe revolved causing 

the inner planets to move). 

  



11 
 

Galileo and Kepler 
 

“[The universe] cannot be read until we have learnt the language and become 

familiar with the characters in which it is written. It is written in mathematical 

language, and the letters are triangles, circles and other geometrical figures, 

without which means it is humanly impossible to comprehend a single word.” 

Opere Il Saggiatore p. 171. - Galileo  

 

Three 16th - 17th century figures, Galileo, Kepler, and Newton are important for understanding 

the shift to using mathematics to describe the universe quantitatively. Kepler’s earlier then later 

works provide an interesting shift from a qualitative to quantitative mathematical description of 

planetary motion. 

 

Johannes Kepler (1571 – 1630) in his work Mysterium cosmographicum proposed a model for 

the Copernican system based on the five Platonic solids which he used to explain the distances 

between the planet orbits. It has very much the favor of a qualitative mathematics. 

 

Starting with the outermost planet Saturn, 

in a sphere containing the orbit of Saturn, 

inscribe a cube (seen right). Within this 

cube inscribe a sphere: this is the orbit of 

Jupiter. 

 

Within Jupiter’s sphere, inscribe a 

tetrahedron (seen right). Within this 

tetrahedron inscribe a sphere: this is the 

orbit of Mars.  

 

Within Mars’s sphere inscribe a 

dodecahedron. Within this dodecahedron  

inscribe a sphere: this is the orbit of the 

Earth. Note that the Moon revolves 

around the Earth. 

 

Within Earth’s sphere inscribe an 

icosahedron. Within this icosahedron 

inscribe a sphere: this is the orbit of 

Venus. 

 

Within Venus’s sphere inscribe an 

octahedron. Within this octahedron 

inscribe a sphere: this is the orbit of 

Mercury. 

 

As Kepler saw it this must be correct since the earth and the five known planets are separated by 

the five Platonic solids – an example of the qualitative use of mathematics to explain the 

Platonic solid model from Mysterium cosmographicum 
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universe. Unfortunately, as it turned out the model did not quite fit the data as astronomical 

observations were getting better.  

 

Better and more accurate astronomical observation (specifically the observed retrograde1 motion 

of Mars as seem from the Earth) caused Kepler to revise (throw out?) his model. Here we see a 

shift from qualitative to a quantitative mathematical explanation of planetary motion.  

 

In 1609 Kepler published his first two laws of planetary motion 

Law I (the Ellipse Law) - the curve or path of a planet is an ellipse (not a circle) whose  

radius vector is measured from the Sun which is fixed at one focus (a Copernican  

heliocentric system).  

 

 

 

 

Law II (the Area Law) - the time taken by a planet to reach a particular position is 

represented by the area swept out by the radius vector drawn from the fixed Sun (areas in 

pink). Note that this no longer assumes unform velocity.  

Thus no longer circular orbits and no longer uniform motion! Kepler’s 3rd Law came later. 

 Law III (the Square Cube Law) For all planets the ratio of the squares of their period will 

be the same as the ratio of the cubes of the mean radii of their orbit.  

Finally Newton 

Isaac Newton (1642 Julian Calendar– 1727) proposed his law of gravity, a mathematical 

equation, which states all objects are mutually attracted with a force proportional to the product 

of their masses, 
1 2m m , and inversely proportional to the square of their distance, 2d , with G

being a gravitation constant. That is 1 2

2

m m
Force G

d


= .This along with his three laws of motion 

… 

Law 1 – (Inertia) A body at rest stays rest and a body in motion stays in motion unless 

acted upon by an outside force (no need of an outside force to maintain movement) .  

Law 2 – Force is a function of mass times acceleration or 
dv

F m a m
dt

=  =   

 
1 The retrograde motion of Mars was the apparent backwards motion of Mars as seen from Earth. With a smaller 
and faster orbit of Earth inside the larger and slower orbit of Mars, as the Earth overtook Mars, the position of 
Mars in Earth’s sky was seen to go backwards.  
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Law 3 – For every action there is an equal and opposite reaction. 

 

… solved the problem of describing planetary motion, a quantitative description describing how 

the planets (and by extension the entire natural world) worked. Mathematically Newton 

described that or more precisely mathematically how a certain force (e.g. gravity) works, not the 

why. As Newton put it “Non fingo hypotheses” – I do not feign hypothesis.  

 

Stack of bones extracted at autopsy, 

bleach-soaked, messy bits removed, 

arranged on a pedestal in the classroom, 

shellacked, perfectly articulated, 

clattering, ghoulish display. 

 

Tome of mind-scrambling spells, 

fanciful shapes teased from thin air, 

mazes, knots, rotating matrices, 

meandering möbius strips, 

rippling surfaces, Klein bottles. 

 

Book, bone, garb, trivial 

intersections with mortal perception. 

 

Back to the Pythagoreans and forward to Cantor and Turing  
 

Originally the Pythagoreans believed that all quantities (numbers) were commensurate; that is 

given any two numbers x and y there was a third number z that measured both; that is in more 

modern terms there are integers m and n such that x m z=  and y n z=  . Thus 
x m z m

y n z n


= =


or  

the ratio of any two numbers is a rational number. To continue, if y = 1 then it follows that  

m
x

n
=  so every number is a rational number, in the form 

m

n
for integers m and n where n does 

not equal zero.  

 

Unfortunately, they also discovered that there were numbers which were not rational. For 

example, 2 cannot be expressed as the quotient of two integers (see entries for Irrational Loss  

and Ode to 22 ). These are the so-called irrational numbers, which together with the rational 

numbers make up the set of real numbers (see Meditation on Transcendental Number).  

 

 Then in the 19th and 20th centuries it was proved that…  

 

1. The rational numbers could be put into a one-to-one correspondence with the natural 

numbers; that is, you could enumerate them or line them up one to one with the natural numbers  

1, 2, 3, … etc. They were countably infinite. In other words, there are as many rational numbers 

as integers because you could pair them off.  
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However, Georg Cantor (1845-1918) proved that the set of all real numbers could not be put into 

a one-to-one correspondence with the natural numbers (or integers); they were uncountably 

infinite – a larger infinity. See Cantor’s Ghazal. 

 

For example, if you tried to pair off the integers (or even the countably infinite rational numbers) 

with all the real numbers, there would always be some real numbers left out. So, if the rational 

numbers are countably infinite, and the real numbers (rational and irrational) are uncountably 

infinite, the conclusion is that the irrational numbers are uncountably infinite. That is, in some 

strong mathematical sense there are more irrational numbers than rational numbers. Thus the 

irrational numbers make up the majority of all real numbers.  

 

2. To continue, a computable number is one which can be computed out to any degree of 

accuracy using a Turing machine (Alan Turing 1912-1954) or its modern equivalent, a computer 

program (see entry for Metempsychosis which elaborates this idea). However, the set of Turing 

machines is countably infinite, hence the set of computable numbers (which easily includes all 

rational numbers and some (but not all) irrational numbers (like  ) are therefore countably 

infinite which means … 

 

3. Most irrational numbers cannot be computed (and are therefore unreachable? 

unknowable? beyond human knowledge?).  

 

Thus Mathematics …. 

 

“It is its own rough beast, 

roaming an unknowable territory, staring 

with omnichromatic vision through focal 

depths of countless glittering ommatidia, 

rambling amid tangles of helical strands 

and galactic filaments, wild variables 

crawling over its skin. It feasts on mushy 

stew of particle and wave, gravity, time, 

breathes in the spin of every lepton, laughs 

at notions of elegance, structure, wisdom, 

plays with axioms like toys. 

Secret, savage deity” 
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“All is Number” 
 

 

 

 

 

 

  Birth of One 

  Lyre’s clear song 

  Over foaming sea 

              + 

  Not two ships, 2 

  Peeled to the crux 

  Notes, 3rds, 4ths, 5ths 

  Reverberate in singing stars 

                 = 

  Dung beetle marbles, Saturn’s moons 

  Forest canopies, beehives, cracked clay 

  Cosmic nets, chromatophores, mayfly wings 

  Leptons, planets, whirlwinds, summersault spiders 

  F = ma, i2 = -1, V-E+F = 2, dS ≥ 0, xn+1 = rxn(1-xn) 

                        

 

 - E R Lutken (3: A Taos Press © 2021) 
 

“All is Number” 
 

“All is Number” is attributed to the 6th century BCE Greek philosopher Pythagoras who proposed that 

somehow number was the key to understanding the world (recall Fundamentals of Mathematics). The 

idea that mathematics is a means (or the means) to describe and understand the universe has come down 

to us today.  

 

Originally mathematics was seen as a qualitative description of the world. For example, because circles 

were perfect and since the heavens were prefect, the orbits of the planets were circular. In a way this 

made sense especially since given the lack of better observational data, there was no evidence to the 

contrary. That would have to wait until the 17th century. 

 

However, by the 17th century with the observational data provided by Tycho Brahe, Kepler suggested a 

different mathematical model, a quantitative description based on ellipses with orbits of planets 

determined by equal areas being swept out in equal times. This was simplified by Newton’s  Law of 

Gravity 1 2

2

m m
F G

r
=  which expressed the force of gravity F between two objects as a function of  a 

constant G times the product of the two masses, 1m and 2m divided by the 2r , the square of the distance 

between them. It is important to note that this is a mathematical equation, a quantitative description 

describing the effect of gravity, a force, which in turn directed the orbits of the planets around the sun.   

 

Thus, it is still true – “All is Number” but used now as a quantitative description of the world, not a 

qualitative one. 
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The poem’s last line of five very different equations presents the richness of mathematics as seen in 

different areas of knowledge.  

   

F = ma 

Newton’s Second Law of Motion: Force F equals Mass m times Acceleration a where 
2

2

dv d s
a

dt dt
= = . 

Acceleration is the first derivative (rate of change) of velocity v with respect to time t and the second 

derivative of distance s with respect to time t (or the rate of change of the first derivative, velocity, with 

respect to time).  Recall that Newton along with Leibniz was a co-discoverer (or co-inventor?) of 

calculus!   

 

This equation models our understanding of the physics of motion. 

 

i2 = -1 

Complex Numbers: If 1i = − then ( )
2

2 1 1i = − = −  

 

All positive numbers have two square roots. For example, 4 2, 2= + − . But what about the square roots 

of negative numbers, for example 4 ?− =  or even 1 ?− =  As mathematics and science advanced so our 

understanding of number also advanced, so to answer this square root question, we define 1 ,i i− = + − so  

4 4 1 2 , 2i i− =  − = −  - two square roots! 

 

The addition of 1i = −  extends the set of numbers to include the so-called (and poorly named) imaginary 

numbers, for example 2.7182i .So the set of real numbers like 3.1415 when combined with (added to) the 

set of imaginary numbers yielded the set of complex numbers like 3.1415 2.7182i+  thus opening a whole 

new understanding of numbers. See Meditation on Transcendental Numbers, Euler’s Identity, and Augury 

in Sand.  

 

V – E + F = 2 
 

V – E + F = 2, Euler’s Polyhedral Formula (see Distillations) is a topological formula about solid three-

dimensional polyhedrons which has applications in networks and graph theory. Topology is the study of 

the properties of geometric figures which are invariant under continuous transformations meaning you 

can stretch, twist, and bend but not break the figure. This is sometimes referred to as rubber-sheet 

geometry. In this case given any polyhedron (with no holes in it), the number of vertices V minus the 

number of edges E plus the number of faces F always equals 2.  

 

For example, a cube is a polyhedron having 8 Vertices, 12 Edges and 6 Faces.  

 

 

 

 

Therefore 8 – 12 + 6 = 2. 
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A polyhedron can be flattened into a two-dimensional planar 

graph. For example, if you take the cube above, stretch it and 

flatten it out so that the area bounded by the red face above is 

stretched and pulled back to be the outside boundary of the red, 

yellow, purple, blue, and center green regions (on the right) then 

this planar Map of Oz also satisfies the V – E + F = 2 equation.   

 

There are 8 vertices, 12 edges and 6 faces (or regions) so 

 

2 8 12 6 2V E F or− + = − + =  

  

Thus, the V – E + F = 2  result holds for all planar graphs 

counting the outside region as one face.  

 

In fact, every planar graph has the Euler V – E + F = 2 property 

counting the exterior region as one of the faces. If a graph does not satisfy V – E + F = 2 then the graph 

cannot be planar.  

 

What is interesting is that any graph which does not satisfy V – E + F = 2 cannot be planar has 

applications in theory of networks and graph theory.   

 

For example, consider the Three Utilities Problem: Given three utilities, Phone, Water and Electricity and 

three Houses, is it possible to connect each of the three houses to each utility without having the lines 

crossing (a planar graph) ? 

 
              P           W           E 

 

 

 

 

             H1           H2          H3 

 

V = 6. E = 9 (each of 3 houses is connected to 3 utilities). However, F (or the number of regions) is a bit 

more difficult to figure out. Below can see that a loop with four edges (utility to house to different utility 

to different house and back) defines a region or face (e.g. P to H1, H1 to E, E to H2, H2 to P or 

P(H1)E(H2)). So how many four-loops are there?  

 
                     P 

 

 

 

     W       H1  [1]  H2  [2]  H3 

 

 

             [3]       

         

       [4]           E 

 

 

 

1 

6 

2 

3 

4 

5 
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Ignoring the W to H2 edge (dashed green) we can easily count four regions defined by solid lines: [1]: 

P(H1)E(H2), [2]: P(H2)E(H3), [3]:W(H1)E(H3), and the outside region [4]:P(H3)W(H1). But what about 

the W to H2 dotted-edge?   

 

The way to count the 4-loop regions follows. 

 

Each 4-loop has either {P, E}, {P, W} or {E,W} as two of its vertices with the other two obtained from 

the set {H1, H2, H3}.   

 

The P-H loops: You can do P(H1)E(H2), P(H1)E(H3) or P(H2)E(H3) – for only three unique 4-loop 

regions! Careful because there are multiple orderings to describe the same 4-loop regions which is why 

this is complicated. 

 

The P-W loops: In an equivalent way, you have P(H1)W(H2), P(H1)W(H3) or P(H2)W(H3) for three 

more unique 4-loop regions.  

 

The E-W loops: And finally, you have E(H1)W(H2), E(H1),W(H3), or E(H2)W(H3) for three more 

unique 4-loop regions.  

 

Altogether the number of faces (loops) is 9 but V – E + F = 6 – 9 + 9 = 6 not 2!  

 

So, the take-away is the Three Utilities Problems has no planar graphical solution since the number of 

vertices, edges, and faces (regions) violates Euler’s Polyhedron Formula. 

 

Consider a simpler case with 2 utilities (Phone and Electricity) and 3 houses. With one pair of utilities and 

3 pairs of houses, the number of loops (and therefore regions) of utility to house to different utility to 

different house is 1 × 3 = 3.  

 
 

                      P 

 

 

           H1         H2         H3 

 

 

 

                      E        

 

Here we see a planar graph with 5 Vertices, 6 Edges and 3 Faces or Regions: P(H1)E(H2), P(H2)E(H3) 

and P(H1)E(H3) so V – E + F = 5 – 6 + 3 = 2 

 

Euler’s Polyhedron Formula expresses a topological feature about planar graphs as a numeric 

relationship between the number of edges, vertices and faces.   
 

 

dS > 0 
 

This very simple inequality is the 2nd Law of Thermodynamics which states that the change in entropy  S 

(denoted dS)  is always positive. The universe is increasing in disorder; things run down over time. Note 

how a simple mathematical inequality describes a scientific observation.  
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( )1 1n n nx r x x+ =   −  

 

A recurrence relation like ( )1 1n n nx r x x+ =  − is an example of a feed-back function where given a 

variable nx  (starting with some initial 0x ) a new value 1nx + is computed which in turn is used to obtain 

the next value 2nx + and so on. It’s useful if the sequence of x’s converges to some value.  

 

For example, the square root of any positive number a can be computed using the recurrence relation 
2

1
2

n
n

n

x a
x

x
+

+
= which given any starting value for 0x close to a converges quickly to a . 

The recurrence relation given above is Newton’s Iteration formula for computing the square root of a > 0. 

 

Another way of thinking about a recurrence relation is that describes a quantity that can be expressed (or 

defined) in terms of a smaller case of itself. (Note there must be an initial value 
0x to prevent the problem 

of infinite regression!)  

The logistic function ( ) ( )1f x x xr=  −  is a family of recurrence relations depending on parameter r whose 

behavior depends on the  value of r. It is used to demonstrate chaos or chaotic behavior (see Math History 

in a Few Bad Clerihews). If r is less than 3.0 then any initial value of 
0x such that 

00 1.0x   will 

eventually converge to a single value although the closer r is to 3 the slower the convergence. Things get 

interesting for values of 3.0r  . 

 

Demonstrating Chaos : Web Diagrams 
 

Chaotic behavior (see Math History in a Few Bad Clerihews) is best seen graphically with a web diagram. 

The diagrams on the following page start with plotting the logistic function ( ) ( )1f x r x x=  − (in red) on 

the interval of interest, in this case the closed interval  0,1 . Also displayed is the line y x=  (also in red). 

 

An initial value 0x is chosen at random. The corresponding ( )0 0 01y r x x=  − is computed and a vertical 

line segment (in blue) from ( )0 ,0x to ( )0 0,x y is drawn. Since ( )1n n ny r x x=  − is a quadratic function, 

the values ( ),n nx y will plot on the upside-down parabola of the logistic equation. Since we are plotting 

the action of a recursive function we set 1x equal to 0y , draw a horizontal line from ( )0 0,x y to the line 

y x= at ( )1 0,x y , and next recursively compute ( )1 1 11y r x x=  −  since the x-coordinate on this line equals 

1x . As before we draw the vertical line from ( )1 0,x y to ( )1 1,x y  obtaining a second value for the recursive 

function . Repeating this process draws a web. Each new y value becomes the next x value.  

 

For example, if r = 2.8 then for any initial value of 0x  (where 00 1.0x  ) the iteration of 

( )1 1n n nx r x x+ =  − will eventually converge to x = 0.6428571429 
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In the Web Diagram to the right we plot the 

ordered pairs ( )1,n nx x + , ( )1 1,n nx x+ + etc. 

generated by the recurrence relation.  

 

Note how they spiral in to the fixed value 

0.642857.  

 

Note  how the values converge to a single 

point on the parabola – intersecting the line  

y = x. 

 

 

 

 

 

 

At r = 3 bifurcation occurs – the values of 
nx

converge to two values bouncing back and 

forth between two points on the parabola. 

And as r increases further bifurcations occur 

to values with period 4 then 8 etc. to 

eventually chaotic behavior.  

 

It should be pointed out that no matter where 

we start, we always converge to the same 

point(s) on the parabola. 

 

 

 

 

 

At r = 3.70 we see the values of xn 

chaotically bounce over a range of values.  

 

It is chaotic because if we alter the initial 

value of x, (in this case 0.250), the resulting 

web will be very different.  

 

This is called sensitivity to initial conditions, 

a feature of chaotic behavior which makes 

the long-term behavior of chaotic 

phenomena (like the weather) difficult to 

predict.  

 

Note that as r increases the slope where the 

parabola intersects the line y = x becomes 

steeper – a hint (?) as to why chaos occurs?  

 

(x0,y0) 

(x1,y0) 

(x1,y1) 
(x2,y1) 

(x2,y2) 

(x0,0) 
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Zero 

 

Zip, null, the empty sum.  

  

What is the use of a number 

that cannot be?  

Not prime, not composite,  

not positive or negative.  

 

No one can sense it –  

it’s nothing.  

 

Can’t divide it up –  

all parts of nothing are nothing.  

 

Can’t use it to divide things either –  

that would mean cutting something into no pieces.  

 

Multiplying it doesn’t do jack –  

if it isn’t anything to start with  

why would more of it be something?  

 

So what’s the use?  

Place holder? Identity marker?  

Symbol of absence? Point of departure?  

 

0  

 

opens on the page like the dark mouth of infinity,  

hobbit door to a blank symmetry  

where fragile constructs of points, vectors, strings dance,  

arcs, lines, planes stretch to no end  

and all ends.     -  E R Lutken (3: A Taos Press © 2021) 
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Zero: A Sign Found in the Boston Museum of Science 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Problem of Zero 

Is zero a number? Historically zero has presented problems: 

“What is the use of a number  

that cannot be?”  

 

How can you count something that is not there – and if so, can it share the properties of or behave like the 

other numbers? 

 

“Not prime, not composite,  

not positive or negative.” 

 

The ancient Greeks did not consider zero to be a number. And strictly speaking, 1 was not a number 

either as a number was defined as a multiplicity of unity (i.e.1).  Nevertheless, four different cultures 

(none were Western/European) developed a zero: Babylonian, Chinese, Indian (Southern Asia), and 

Mayan – mostly as a placeholder notational device. 

 

“So what’s the use?  

Place holder? Identity marker?  

Symbol of absence? Point of departure?”  

 

 

 

 

 

Zero is the Cardinal Number of the Empty Set 

It’s the number of things you have when you don’t have anything 

It’s the most effective computing device ever invented 

Without it we could not distinguish 23 from 20030 or 20300 or 23000 and arithmetic would be 

a good deal tougher than it is 

And now look at this 

Addition 2 + 0 = 2 3 + 0 = 3 4 + 0 = 4 and so on 

Multiplication 2 × 1 = 2 3 × 1 = 3 4 × 1 = 4 and so on 

0 does the same thing for addition that 

1 does for multiplication 
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Yes, zero as placeholder or as the Sign says: 

 

Without it we could not distinguish 23 from 20030 or 20300 or 23000 and arithmetic would be a good 

deal tougher than it is 

The placeholder use for zero requires a certain type of number representation as in our modern positional 

notation where the position of a digit indicates its weight as a power of 10.  

 

A number representation which had no need for zero is found in Roman Numerals. XXIII (23) is 

distinguishable from MMXXX (2300) which is distinguishable from MMXXX (2030) which is 

distinguishable from MMIII (2003). And 20030 could be expressed as XX XXX where the bar was used to 

multiply by 1,000. Zero as placeholder is not needed. However, Roman Numerals are awkward to use for 

calculation.  

 

But does zero as placeholder, as a purely notational device, make zero a number? What would it take to 

make zero a real number? How can Pinocchio become a real boy?  

 

Enter Zero as a Number 
 

In the 7th Century C.E. the Indian mathematician Brahmagupta (see Math History in a Few Bad 

Clerihews) considered zero as a number and expressed how it worked with (or played well with) other 

numbers. He defined zero as subtracting a number from itself; that is if n is a number, then 0 = n – n. He 

went on to state that … 

 

When zero is added to a number or subtracted from a number, the number remains unchanged; 

and a number multiplied by zero becomes zero. 

 

An Aside: Today we say that 0 is the additive identity; that is, given any number n, there is a unique 

number 0 such that  n + 0 = n and 0 + n = n.  Furthermore, given any number n  there is a unique number 

denoted (-n), the additive inverse, such that n + (-n) = 0. 

 

Of course, we just write this as n – n = 0 

 

The rule for multiplication by zero, that is 0 0n = , is significant as we will see below.  

 

More rules for zero were given in terms of fortunes (positive numbers) and debts (negative numbers). 

Note that multiplication by zero results in zero.  

 

A debt minus zero is a debt. 

A fortune minus zero is a fortune. 

Zero minus zero is a zero. 

A debt subtracted from zero is a fortune. 

A fortune subtracted from zero is a debt. 

The product of zero multiplied by a debt or fortune is zero. 

The product of zero multiplied by zero is zero. 

 

He went on to state rules for multiplication and the division of positive and negative numbers, again in 

terms of fortunes and debts. 
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The product or quotient of two fortunes is one fortune. 

The product or quotient of two debts is one fortune. 

The product or quotient of a debt and a fortune is a debt. 

The product or quotient of a fortune and a debt is a debt. 

 

Finally, Brahmagupta tried to define division by zero.  

 

Positive or negative numbers when divided by zero is a fraction with the zero as denominator. 

 

Zero divided by negative or positive numbers is either zero or is expressed as a fraction with zero 

as numerator and the finite quantity as denominator. 

 

Zero divided by zero is zero. 

 

Why You Can’t divide By Zero 

“Can’t divide it up –  

2 0 0 = all parts of nothing are nothing.  

 

Can’t use it to divide things either –  

that would mean cutting something into no pieces.  

 

Multiplying it doesn’t do jack –  

if it isn’t anything to start with  

why would more of it be something?”  

 

As noted above, multiplication by zero yields zero: For example: 6 0 0 =  

 

Now if (since) Division is the inverse of Multiplication, for example 6 3 2 = , because 3 2 6 = , then 

6 0 n = if and only if 0 6n = except 0 0n = (not 6!). So, division by 0 is undefined. 

 

Other Appearances of Zero in Expressions – Maybe some not so obvious 
 
Aside from the fact that you cannot divide by zero (although zero divided by any non-zero number is 0; 

that is  
0

0
n
= for 0n  ), zero plays well with other numbers; it fits the pattern of how numbers work. 

Consequently, we can extend the appearance of zero into other mathematical expressions. 

 

Exponentiation: 0 1 0b for b=   

For a positive integer n and 0b  , ...
n

nb b b b b
−−−−−−−− −−−−−−−

=     ; that is b  multiplied by itself n  times. In the same 

way for a positive integer m  
1m

m
b

b

− = . Using the standard (cancellation) rules of exponents, 

n
n m n m

m

b
b b b

b

− − = =  . If n m= the numerator and denominator being equal cancel to 1 thus 0 1n mb b− = = . It 

fits the pattern. 

 

Factorials: 0! 1= ?  For any positive integer n, n factorial written ( ) ( )1 2 ... 3 2 1!n n n n=  −  −      is the 

product of the integers 1 up to n. For example, 3 2 1 63!=   = and 44 4 3 2 2! 1=    = etc. 
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However note that 2! 12 !=  , 3! 23 !=  , 4! 34 !=  and in general ( )! 1 !n n n−=   for any positive 

integer n  greater than 1 (a recursive formula for factorials). But what about 1! 01 !=  ?  Zero factorial?  

As it turns out it’s convenient to define 0! equal to 1. In a sense it fits the pattern. So, the recursive 

formula ( )! 1 !n n n−=   holds for all positive integers including 1.  

The Binomial Coefficient 
n

k

 
 
 

 for non-negative integers k and n where 0 k n   is defined as the 

number of different subsets of k object that can be selected from a set of n objects.  

 

For example, 
4

4
3

 
= 

 
is the number of subsets of three items chosen from a set of four, , , ,a b c d ; that is  

        , , , , , , , , , . .a b c a b d a c d b c d . 

 

A formula for 
n

k

 
 
 

 is given by 
( )

!

! !

n n

k k n k

 
= 

− 
 so 

4 4!
4

3 3! 1!

 
= = 

 
. And since by definition 0! 1= it 

follows that
( )

!
1

0 0! 0 !

n n

n

 
= = 

− 
which makes sense since there is only one empty set that can be chosen 

from a non-empty set of n items. It fits the pattern.  

 

The 
0

0
form and differentiation (for those familiar with calculus) 

 

We’ve shown that you cannot divide zero by zero 

(Brahmagupta had trouble with this) but as a form and not a 

legitimate mathematical expression, 
0

0
is important and 

useful as seen in how it appears in calculus to define a 

derivative.    

 

The Derivative: 

 

The derivative from calculus is the slope of a curve at a 

point.  

 

The slope of a straight non-vertical line is found by taking 

the coordinates of any two points ( )0 0,x y and ( )1 1,x y on 

the line, and taking the ratio of the change of y, y ,  

divided by the change of x, x , to compute the slope 1 0

1 0

y yy
m

x x x

−
= =
 −

. Since the slope of a straight 

line is the same everywhere, it doesn’t matter which two points you choose; the slope is always the same. 

From here is it not difficult to derive the slope-intercept equation of a line, y m x b=  + , where the line 

crosses the y-axis at the y-intercept (0,b),.     

 

(x1,y1)    + 

Δx 

Δy 

(x0,y0)    + 
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But what about choosing two points on a curve (seen in the diagram above) and asking the question what 

is the slope of the curve at the point ( )0 0.x y ?  

To find the slope of the curve at the point ( )0 0x y , using a second point ( )1 1,x y we take the ratio 1 0

1 0

y y

x x

−

−

and sneak up on it by sliding the point ( )1 1,x y closer and close to the point ( )0 0,x y . The slope is the 

limiting value as the two points get closer and closer. (Note – a typical calculus course covers limits first.)  

 

To introduce some algebraic notation to this process, let the curve be described by some function 

( )y f x= and now rephrase the question as what is the limit as 1x approaches 0x or 

 

( ) ( )
1 0

1 0

1 0

lim
x x

f x f x

x x→

−

−
 

 

Notice that in the limit we’re approaching the 
0

0
form. 

Now if we let 1 0h x x= −  and 1 0x x h= +  we obtain the standard definition for the derivative of a 

function f(x):  

( )
( ) ( )

0
lim
h

f x h f x
f x

h→

+ −
 =   provided the limit exists. 

 

As h approaches zero, the so-called difference quotient 
( ) ( )f x h f x

h

+ −
 approaches 

0

0
. Yet as we 

approach an undefined ratio 
0

0
, division by 0 as the limiting value of this ratio, the value of the ratio close 

to h = 0, may approach a definite value and if it does, we define this limiting value of be the slope of the 

curve. This is the trick! The target 
0

0
is undefined but as we get closer and closer to the target, the limit 

may be defined! As my high school math teacher would say  

 

“we’re sneaking up on division by zero!” 

 

Example: Let ( ) 2f x x=  

 

( ) ( ) ( )
2 2 2 2 2

0 0 0 0

2
lim lim lim lim
h h h h

f x h f x x h x hx xh h x

h h h→ → → →

+ − + − + + −
= = =

( )2x h

h

+

0
lim2 2
h

x h x
→

= + =  

 

That is ( )2 2
d

x x
dx

=  

 

Thus, the 
0

0
form appearing in a limit is the basis for differentiation. Every function for which this limit 

exists is a differentiable function, a very important and large class of functions used to solve many 

problems.  
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To continue, once you have a derivative function defined, ( )f x , many problems using derivatives 

require finding where ( )f x  equals 0.  

 

Example: Given the quadratic function ( ) 2f x ax bx c= + + (a parabola for 0a  ) its derivative is 

( ) 2f x ax b = + . Setting the derivative equal to zero and solving 0 2ax b= + yields 
2

b
x

a

−
= . This is the 

x coordinate for the vertex of the parabola (the y coordinate is  

2 4

4

b ac

a

− +
), the valley point (minimum) 

of the quadratic if a > 0 (the parabola opens up) or the peak point (maximum) of the quadratic if a < 0 (the 

parabola opens down).  

 

Aside: While differentiation and calculus were developed in the late 17th century, it wasn’t until the early 

19th century that mathematicians put differentiation and calculus on a mathematically firm foundation. 

They knew it worked; they had a hard time rigorously justifying why it worked!  In mathematics it’s all 

about proof !  

 

Searching for Zeros 
 

If you take a course in algebra, you learn to use the quadratic formula 
2 4

2

b b ac
x

a

−  −
=  to solve the 

quadratic equation 2 0ax bx c+ + = ; where the curve crosses the x-axis.  

 

You also learn techniques for finding the zeros for any polynomial equation; that is, for what value of x is 

the polynomial expression 1 2

1 2 1 0...n n

n na x a x a x a x a−

−+ + + + + equal to 0? 

 

If you take a course in calculus, a standard problem is to find where the derivative of a function (see 

above) is zero. Why? Because that’s where the function achieves a maximum or minimum value. That is 

where the function representing some mathematical model reaches its optimal value (where the rate of 

change ( ) 0f x = ). A lot of mathematics seems to come down to a search for zero.  

 

“What is the use of a number  

that cannot be?” 

 

Good question since in algebra or calculus we’re always looking for zeros!  
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So what is zero and what use is it?  
 

“So what’s the use?  

Place holder? Identity marker?  

Symbol of absence? Point of departure?  
  

 

   0  

Zero is the center and origin of the real number line, the Cartesian plane and 3-space with x, y, z axes 

radiating in three spatial dimensions. The goal of a count-down: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0!  

 

opens on the page like the dark mouth of infinity,  

hobbit door to a blank symmetry  

where fragile constructs of points, vectors, strings dance,  

arcs, lines, planes stretch to no end  

    and all ends.” 

 

Is zero the “the dark mouth of infinity” or infinity’s nemesis? 

Zero: the center and starting point of all things.  

What about the 0 form? Does 0 destroy ∞ or does ∞ destroy 0?  

The Answer? 

 It depends! 
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“Who Knows One?” 
 

Babylon’s dawn, mark on a rough clay tablet,  

born whole, natural, rational, real.  

Single stroke of pen on primal parchment,  

scratch of beginning, omneity unveiled  

side by side with nothing, strings of words  

map all matter ever known or thought.  

Patterns portray a splendid, thorny  

world revealed in sloppy truths and graceful knots.  

The number that bears all, generously lends  

itself, the source, the hum, the living wealth  

of everything and never alters or bends  

whatever is, but lets it be exactly itself.  

One is One and all alone  

and evermore shall be so 

    --   E R Lutken (3: A Taos Press © 2021) 
 

Green Grow the Rushes, O 
 

The last two lines come from the poem/song “Green Grow the Rushes, O” whose verses count backwards 

from twelve to one linking each integer with a collection of objects.  

 
I'll sing you twelve, O 

Green grow the rushes, O 

What are your twelve, O? 

Twelve for the twelve Apostles 

Eleven for the eleven who went to heaven, 

Ten for the ten commandments, 

Nine for the nine bright shiners,  

Eight for the April Rainers.  

Seven for the seven stars in the sky,  

Six for the six proud walkers,  

Five for the symbols at your door,  

Four for the Gospel makers, 

Three, three, the rivals (arivals?), 

Two, two, the lily-white boys, 

Clothed all in green, O 

One is one and all alone 

And evermore shall be so. 

 

The references in the poem/song seem to be a mixture of objects or groupings, both religious and 

astronomical. In any case as near as can be determined, the exact meaning of many of the verses can’t be 

pinned down; some are obvious, others obscure. 
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Normally we think of integers as counting items. In the above poem/song each integer is closely 

identified with a particular group, object or notion. But as in the poem/song above, in the listing of the 

integers one through twelve below, many integers also have other algebraic, geometric, and cultural 

properties.  

 

The integers 1 thru 12 with three interesting irrational numbers inserted in-

between. 
 

One – The Source of all Numbers 

 
One is one and all alone 

And evermore shall be so. 

 

“Single stroke of pen on primal parchment”:  |  →   I  → 1     

  

Since numbers referred to a multiplicity, the ancient Greeks did not consider one (unity) to be a number 

since numbers were seen as multiplicities of unity.  

 

One is the multiplicative identity since 1 1n n n =  =  for any number n . 

  

A prime integer is an integer whose only divisors are 1 and itself. However, though the only divisors of 1 

are 1 and itself, 1 is not considered prime. An important (and useful) theorem in mathematics is the Prime 

Factorization Theorem (see Prime Syllabus Song) which states that every positive integer can be uniquely 

expressed as a product of primes. If 1 were a prime, uniqueness would disappear.  

 

On the other hand, 1 is considered to be a factor for any positive integer since 1 divides evenly into that 

integer. For example, the factors of 6 are 1, 2, 3, and 6 itself. It’s just that 1 is not  considered to be a 

prime factor. 

 

1 is its own square: 
21 1= , its own cube 

31 1= etc.  

 

One is One and all alone 

and evermore shall be so 

 

Phi - 
1 5

1.618033989...
2


+

=   

See Φ 
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Two 

 
Two, two, the lily-white boys, 

Clothed all in green, O 

The smallest and only even prime. 

  

Two points determine a line and the intersection of two lines determine a 

point. 

  

Two is the dimension of a plane.  

 

Two is the cardinality of Yin and Yang: the concept of duality (opposite or 

complementary forces). 

 

Euler’s Formula V- E + F = 2  See All Is Number 

 

The base of binary notation: There are 10 kinds of people who understand binary (an old joke!).  

 

Even integers are defined by being evenly divisible by 2; that is an integer n is even if and only if there is 

another integer k such that 2n k=   

 

The Exponential e: 
0

1
2.71828128...

!n n



=

=    

See Phaeton’s Ride 

 

Three 

 
Three, three, the rivals (arrivals?), 

 

The Three Wise Men (the arrivals?) 

 

The first odd prime,  

 

The 1st non-trivial triangular number (1 2 3+ = ).  

 

Number of sides and angles in a triangle.  

 

The dimension of space: length , width, height 

 

An equilateral triangle can be constructed using only straight-edge and compass: From Euclid Elements 

(ca 300 BCE) Prop I.1 “To construct an equilateral triangle on a given finite straight line.”  

 

The Trinity 

 

RGB (Red-Green-Blue) color triad used by computers. 
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Pi - 3.141592654...
circumference

diameter
 =   

 
See π 

 

 

Four 
 

Four for the Gospel makers 

 
The Four Gospels: Matthew, Mark, Luke , John  

 

The first non-trivial square: 
22 4= .  

 

The number of vertices and faces in a regular tetrahedron (each face is an 

equilateral triangle).   

 

A square can be constructed using only straight-edge and compass: From 

Euclid Elements (ca. 300 BCE) Prop I.46 “To describe a square on a given 

straight line”  

 

The four points of a compass: North, East, South, West 

 

Four quadrants of the cartesian plane 

 

Five 

 
Five for the symbols at your door, 

 
Five for the symbols at your door is obscure. (a pentagram?) 

 

The 3rd prime number.  

 

A regular pentagon can be constructed using only straight-edge and compass: 

From Euclid’s Elements (ca. 300 BCE) Prop IV.11 “To inscribe an equilateral and 

equiangular pentagon in a given circle.”  

 

There are 5 platonic solids. Polyhedra all of whose faces are regular polygons: tetrahedron, octahedron, 

cube, dodecahedron, icosahedron. The dodecahedron has 12 pentagon sides, the cube square sides and the 

other three triangular sides.  
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Six 

 
Six for the six proud walkers, 

 
The first perfect number whose proper divisors 1, 2 and 3 sum to 6.  

 

The 2nd non-trivial triangular number: 1 2 3 6+ + =  

 

A regular hexagon can be constructed using only straight-edge and compass: 

From Euclid’s Elements (ca. 300 BCE) Prop IV.15 “To inscribe an equilateral 

and equiangular hexagon in a given circle.” 

 

A cube has 6 square sides. 

 

 

Seven 

 
Seven for the seven stars in the sky, 

 
The Pleiades aka the Seven Sisters: Maia, Electra, Alcyone, Taygete, Asterope, Celaeno, and Merope.  

 

7 is the 4th prime. 3, 5, and 7 make up a prime triplet.  

 

The number of days in a week.  

 

The number of observable celestial objects: Sun, Moon, Mercury, 

Venus, Mars, Jupiter, Saturn (hence the reason behind the 7-day 

week and the names of the days).  

 

The seven days of creation.  

 

The seven classical liberal arts (see right): the quadrivium 

(arithmetic, geometry, music, astronomy) and the trivium 

(grammar, logic, rhetoric)  

 

Unlike a triangle, square, regular pentagon, and regular hexagon, a 

regular 7-sided figure (heptagon) cannot be constructed using only 

straight-edge and compass.   

 

7 is a lucky number! 

 

 

 

 

 

 

Philosophia et septem artes liberales, 
"philosophy and the seven liberal arts." 
From the Hortus deliciarum of Herrad of 
Landsberg (12th century) 
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Eight 

 
Eight for the April Rainers. 

 
The Hyades star-cluster which rising in April signals rain 

 

The first non-trivial cube; 
32 8= . 

 

The number of faces in a regular octahedron (with 6 vertices).   

 

The number of vertices in a cube (with 6 faces). 

 

The 8th day of creation (the New Creation). 

 

The 8-fold path of Buddhism  

 

 

 

 

Nine 

 
Nine for the nine bright shiners, 

 
The Nine orders of Angels  

 

The 2nd non-trivial square: 
23 9=  

 
2 2 23 4 5+ = or 9 15 25+ = - the smallest Pythagorean triple 

 

Repeatedly summing the digits of any decimal integer will eventually result 

in an integer value mod 9 which is its remainder when dividing by 9.  

Example 2357 = 2 + 3 + 5 + 7 = 17 mod 9 = 1 + 7 = 8 mod 9 

If the sum of the digits sums to 9, that number is a multiple of 9. Casting 

out Nines is a technique that can be used to check any arithmetic 

calculation.  

 

For example:  214 + 467 = 681 

214 mod 9 = 2 + 1 + 4 = 7 

467 mod 9 = 4 + 6 + 7 = 17 and 17 mod 9 = 1 + 7  = 8 

Adding 7 + 8 = 15 and 15 mod 9 = 1 + 5 =  6.     

681 mod 9 = 6 + 8 + 1 = 6.     Check! 

 

The 2nd non-trivial square: 
23 9=  
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Ten 
 

Ten for the ten commandments, 

 
The 3rd non-trivial triangular number: 1 + 2 + 3 + 4 = 10 

 

The base of our decimal numbering system. 

 

The Pythagorean Tetractys – 10 dots arranged in a triangle (right) – see 

Fundamentals of Mathematics.  

 

The 10 Commandments 

 

 

Eleven 

 
Eleven for the eleven who went to heaven, 

 
The 12 original disciples of Jesus minus Judas? 

 

The 5th prime number which with 13 is the first pair of twin primes (not counting the triplet primes 3 5 7).   

 

 

Twelve 

 
I'll sing you twelve, O 

Green grow the rushes, O 

What are your twelve, O? 

Twelve for the twelve Apostles 

 
Twelve tribes of Israel and twelve disciples of Jesus 

 

The number of sides in a regular dodecahedron. 

 

The first abundant number whose proper divisors 1, 2, 3, 4, 6 sum to 16 

 which is greater than 12. All previous number were deficient (except 

for 6 which is perfect) 

 

There are twelve months in a year 

 

A dozen 

 

Number of People on a Jury 

 

 

 

 



36 
 

 

 

Green Grow the Rushes, O 

 
I'll sing you twelve, O 

Green grow the rushes, O 

What are your twelve, O? 

Twelve for the twelve Apostles 

Eleven for the eleven who went to heaven, 

Ten for the ten commandments, 

Nine for the nine bright shiners,  

Eight for the April Rainers.  

Seven for the seven stars in the sky,  

Six for the six proud walkers,  

Five for the symbols at your door,  

Four for the Gospel makers, 

Three, three, the rivals (arivals?), 

Two, two, the lily-white boys, 

Clothed all in green, O 

One is one and all alone 

And evermore shall be so. 

 

The numbers  (Phi) e, (Phaethon’s Ride, Euler’s Identity) and  (pi) are covered in separate poems. 

 

 

Question! Why stop here?  

 

What about 13? And why is it considered unlucky? 

 

Finally … 
 

“God created the integers, all else is the work of man.” 
   -- Leopold Kronecker (1823-1891) 
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Cantor’s Ghazal 
 

Abraham looks toward the stars, Albireo, Aldebaran, Altair…past Olber’s dilemma, 

searching an invisible infinite. 

What is beyond number, outside time, space, not dark or light, not substance, 

not emptiness, incomprehensible infinite? 

 

Over and again, on the Nile’s banks, chaos murders order, Set scatters pieces of Osiris 

among grains of desert sand. 

Isis journeys to the uttermost parts, sifts and gathers, reconstructs the body, 

near-cyclical, countable infinite. 

 

Guide who taught men to know the revolving sky, Atlas picked the wrong side 

in Cronos’ battle against immortal gods. 

Condemned to stand, day on night, bearing our massive celestial sphere 

into an achingly tedious, countable infinite. 

 

Zeno’s arrow traces through instants or durative allotments, digital/analog 

reckoning of the inscrutable clock. 

Segments or smooth flight, particle, wave, unbroken arc, parcels parsed into nothing, 

cusp of uncountable infinite. 

 

Child Krishna opens his mouth, Yashoda peers down his throat at the universe 

and all that is not the universe. 

Baby teeth surround the vast, infinitesimal, the real, imaginary, broken, continuous, 

countable, uncountable infinite. 

 

 --  E R  Lutken (3: A Taos Press © 2021) 

 

Counting: 1,2,3, … infinity 

 
The opening chapter (subtitled “How High Can You Count”) of Geoge Gamow’s (1904 – 1968)  book 

One, Two Three … Infinity begins with the following humorous story. 

 

“There is a story about two Hungarian aristocrats who decide to play a game in which the 

one who calls the largest number wins.  

 

‘Well,’ said one of them, ‘you name your number first.’   

 

After a few minutes of hard mental work, the second aristocrat finally named the largest 

number he could think of. 

 

‘Three,’ he said. 

 

Now it was the turn of the first one to do the thinking, but after a quarter of an hour he 

finally gave up. 

 

‘You’ve won,’ he agreed.” 
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The purpose of this story is not to cast dispersions on Hungarians. Indeed some of the most brilliant 

mathematicians like John von Neumann, Paul Erdos, and Gorge Polya were Hungarian. The purpose of 

the story is to introduce the reader into the idea of “how people count”.    

 

Undoubtedly the earliest application/use of mathematics was simply to count things which leads to the 

question of how far can you count?  Given any counting number (integer) there is always one more which 

leads quite naturally to the idea of infinity.    

 

The potential infinite is the idea that given any large number N, there is always a larger one say N+1.  

Compare this to the idea of the completed infinite, that somehow you could have a set containing an 

infinite number of elements!  

 

Abraham looks toward the stars, Albireo, Aldebaran, Altair…past Olber’s dilemma, 

searching an invisible infinite. 

 

Olbers’ Paradox (Heinrich Wilhelm Olbers 1758-1840) or the Dark-Sky Paradox considered the question 

that if the universe was infinite, homogeneous, and static then anyplace you looked at night you should 

always see a star since the set of stars was a completed infinity. But if this was the case, why was the night 

sky black? 

 

 

Abraham 
 

Now consider Abraham’s challenge. 

 

After these things the word of the Lord came to Abram in a vision. “Do not be afraid, Abram, I am your 

shield; your reward shall be very great.” But Abram said, “O Lord God, what will you give me, for I 

continue childless, and the heir of my house is Eliezer of Damascus”. And Abram said, “You have given 

me no offspring, and so a slave born in my house is to be my heir.” But the word of the Lord came to him, 

“This man shall not be your heir; no one but your very own issue shall be your heir.” He brought him 

outside and said, “Look toward heaven and count the stars, if you are able to count them.” Then he said to 

him, “So shall your descendants be” And he believed the Lord, and the Lord reckoned it to him as 

righteousness. Genesis 15:1 – 6 NRSV 

 

 

Zeno’s Paradox 
 

Zeno’s arrow, one of Zeno’s paradoxes, was used to demonstrate the impossibility of motion. For an 

arrow to fly from point A to point B, it had to cover half the distance first. But then it had to cover half the 

distance from A to that halfway point, and thence to first cover the distance between A and a previous 

halfway point etc. etc. etc. In other words, it had to cover the distance of an infinite number of sub-

intervals first. So how can it move at all – it would take an infinite amount of time.  

 

Thus, motion is impossible. 
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The way out of this dilemma is our (modern) understanding that infinite processes can terminate in a 

finite value – in this case 
1

1 1 1 1 1 1
... ... 1

2 4 8 16 2 2k k
k



=

+ + + + + + = = . That is half the distance traveled plus 

half of the half (or a quarter of the distance traveled) plus a half of the half of the half (an eighth) etc. 

sums to 1 – the entire distance from A to B.  

 

 

 
      0                        1/2           1/4   1/8 1/16  1       

 

Think of it this way:  

 

1 1 3

2 4 4

1 1 1 7

2 4 8 8

1 1 1 1 15

2 4 8 16 16

1 1 1 1 1 31

2 4 8 16 32 32

+ =

+ + =

+ + + =

+ + + + =

 

     etc… 

 

Do you see a pattern here? The sums keep getting closer and closer to 1 and since I can get as  close to 1 

as I want (every time I add in a new term, I halve the distance to 1), what’s to prevent me from saying that 

maybe this infinite sum converges to 1. See Measured Illusion and the Completeness Axion for Reals.  

 

There Be Dragons Here … 
 

Of course, a completely rigorous mathematical solution to Zen’s Paradox, that an infinite summation can 

terminate in a finite value, lay almost 2000 years in Zeno’s future!  

 

Cantor and the Countably Infinite 
 

In his book Dialogues Concerning Two New Sciences published in 1638, Galileo (1564 – 1642) 

confronted the problem of the infinite by observing that while on one hand each integer has a square (12 = 

1, 22 = 4, 32 = 9, 42 = 16 …) which seem to imply there were as many squares as integers, yet on the other 

hand, there were obviously more integers than squares since not all integers were squares.  

 

Somehow comparisons of less than, equal to, or greater than could not be applied to infinite sets. It was 

Georg Cantor (1845 – 1918) who unraveled this knot by stating that two sets had equal cardinality if and 

only if they could be put into one-to-one correspondence with each other. 

 

Mathematically speaking, the cardinalities of two sets A and B are equal, written |A| = |B| if and only if 

there is a one-to-one onto mapping (i.e. function) from A to B; that is f:A → B is one-to-one and onto.  
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So, in the case of the integers and squares, since you could line them up and match (see below)… 

 
  1  2  3  4   5   6   7   8   9   10 … 

  1  4  9  16  25  36  49  64  81  100 … 

 

.. the two sets had the same cardinality. Note that this is also true for finite sets.  

 

The fact that the set of squares form a proper subset of the set of integers expresses a property of infinite 

sets: an infinite set S can be put into a one-to-one correspondence with a proper (infinite) subset of set S.  

 

Sets which could be put into a 1:1 correspondence with the natural numbers 1,2, 3, … are countably 

infinite. Cantor called this infinity 0 , aleph naught (aleph being the first letter of the Hebrew alphabet). 

 

Cantor went on to show that the integers, positive and negative were also countably infinite as were the 

rational numbers. To show this all that was needed was to demonstrate a 1:1 correspondence with the 

natural numbers. For example … 

 

Natural Numbers: 1   2   3   4   5   6   7   8   9   10   …  

Integers:       0  +1  -1  +2  -2  +3  -3  +4  -4   +5   …    

 

 

The set of positive rational numbers can be enumerated using a square table (see below). Using a zig-zag 

curve through the table one could pair each rational number with a natural number skipping over any 

rational number (in black) which had already been paired off (in red).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Natural Numbers: 1    2    3    4    5    6    7    8    9    10   …  

Rational Numbers:   1    2   1/2  1/3   3    4   3/2  2/3  1/4   1/5  … 

 

Cantor and the Uncountably Infinite 
 

However, when it came to the set of real numbers Cantor proved that no such one-to-one correspondence 

existed! Since the set of real numbers could not be put into a 1:1 correspondence with the countably 

infinite set of the natural numbers, cardinality of the set of real numbers was a larger infinity – that is 

uncountably infinite.  

 

 

 

 

1 2 3 4 5 6 … 

1/2 2/2 3/2 4/2 5/2 6/2 … 

1/3 2/3 3/3 4/3 5/3 6/3 … 

1/4 2/4 3/4 4/4 5/4 6/4 … 

1/5 2/5 3/5 4/5 5/5 6/5 … 

1/6 2/6 3/6 4/6 5/6 6/6 … 

… … … … … … … 
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Cantor’s Diagonalization Proof 
 

Cantor began by considering just a subset of the reals; that is the set of reals on the interval (0,1) Then he 

assumed the opposite - that there really was a 1:1 correspondence between the natural numbers and the 

real numbers on the interval (0,1). He then obtained a contradiction forcing him to conclude that his 

original assumption that there was a 1:1 correspondence between the natural numbers and the set of reals 

on the interval (0,1) was not true but false.  

 

Real numbers on the interval (0,1) can be written as infinitely long decimal expansion like 0.50000 , 

0.333  or 0.1415926… etc.  So, if there was a 1:1 correspondence between the natural numbers and the 

real on the interval (0,1) he could list then out something like this … 

 
1 | 0.50000 … 

2 | 0.33333 …   

3 | 0.14159 …  

4 | 0.17769 …  

5 | 0.13628 …   

6 |  

 

His diagonalization proof then works as follows. He ran a diagonal down this list of reals and changed the 

nth digit in the nth number, sort like this  

 
1 | 0.60000 … 

2 | 0.34333 …   

3 | 0.14259 …  

4 | 0.17779 …  

5 | 0.13629 …   

6 |  

 

Here we add one to each digit and if the digit was 9 we make it 0.  

 

This new real number 0.64279… differs by one digit from every other digit in the list so it can’t be in the 

list – except we assumed that every real number on the interval (0,1) was in the list! 

 

We have a contradiction, and we are forced to conclude that there is no 1:1 correspondence between the 

natural numbers and the set of reals on the interval (0,1). Moreover, since it can be easily shown that there 

is a 1:1correspondence between the set of reals on the interval (0,1) and the set of all the reals, we have 

proved that the real numbers are not countably infinite but uncountably infinite.  

 

Cantor used the letter c (for continuum) to denote the cardinality of the reals. Therefore 0 c   

 

Some infinites are larger than other infinities. 
 

Cantor went on to construct sets whose cardinality was larger than the cardinality of the reals. 

 

Cantor went on to prove that the cardinality of the power set for a set S, denoted P(S) is greater than the 

cardinality of S; that is |P(S)| > |S|. The power set P(S) of a set S is the set of all subsets of S. This is 

easily seen for finite sets.  
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For example: If { , , }S a b c= then ( )               , , , , , , , , , , , ,P S a b c a b b c a c a b c=  is larger.   

 

In fact, for S a finite set, ( ) 2
S

P S = . For example if the cardinality of S is 3, the cardinality of the 

power set ( ) 32 8P S = = . Cantor was able to prove this inequality for infinite sets; that is ( )S P S

(although 2
S

doesn’t make much sense if S is infinite). What this means is the that set of all subsets of 

the real numbers has a greater cardinality than the set of all real numbers – an even larger infinity. And of 

course, why stop there?  If we denote as the set of natural numbers and as the set of all real numbers, 

then  

 

( ) ( )( ) ( )( )( ) ( )0 ... ...nc P P P P P P P =  =        

 

The Continuum Hypothesis 
 

Question! Is there a proper subset set S of reals (let denote the set of all reals) i.e.

S and S   such that 0 S c   ? In other words, is it possible that c is not the next largest 

infinity after 
0 ? (Aside - If we designate 

1 to be the next largest infinity after 
0 then we’re 

asking which is true: 
1 c   or 

1 c = ?)  

 

The Continuum Hypothesis states that there is no infinite set S whose cardinality is strictly 

between 0 and c, or to put it another way 1c = . Cantor tried to prove this true and then tried to 

prove this false. He got nowhere with it (which may have contributed to his eventual mental 

breakdown). 

 

It turns out that the Continuum Hypotheses is independent of the axioms for set theory; that is, 

given the set of axioms used to prove results (theorems) about sets, the continuum hypothesis can 

neither be proved nor disproved : so you can have one form of set theory where the Continuum 

Hypothesis (denoted CH) is assumed true and another form of set theory where the Continuum 

Hypothesis (denoted ¬ CH) is assumed to be false. That is adding either CH or ¬ CH as an 

additional axiom to the set of axioms for set theory results in two different set theories with 

different results (theorems) proved by each. Take your pick! 
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Irrational Loss 

 
After she’s fed, teeth brushed, shuffled into bed,  

he breaks out of the dungeon, desperate for air,  

choking on lucid memories of rational years,  

easy, hopeful reckonings of what lay ahead,  

now nothing but dank clutter, a slew of the unsaid,  

unsayable. Her wounded mind never clears –  

discussions, odes, lullabies all lost to tears.  

He voices it; the wish that she were dead,  

as if that would bring closure. Multiply  

the irrational by zero, it should disappear –  

no – subtract one (void is the deceased’s concern).  

She won’t be dead for him, not even when she dies,  

but forged within shackles of a garbled remainder,  

stray glints of the smile, the music might return 

      --   E R Lutken (3: A Taos Press © 2021) 

 

The Problem of Irrational Numbers 
 

The ancient Greeks (e.g. the Pythagorean brotherhood) initially believed that all numbers were 

commensurate, that is, given any two numbers x and y there was a third number z and integers n and m 

such that 

x = n×z  and y = m×z 

 

That is, both x and y were integer multiples of a common number z. 

 

Today we’d say that all numbers were rational numbers; that is, any number c is expressible in the form 

a

b
where a and b are integers and 0b  (since you cannot divide by zero). 

 

However, the ancient Greeks discovered that this was not always the case. Some numbers like 2 were 

not  commensurate with any integer. Today we say 2 is an irrational number. 

 

They were wrong – and they knew it! 

 

 

 

 

 

 

 

 

 

This discovery is sometimes referred to as the first logical scandal in mathematics (recall Fundamentals 

of Mathematics). 

<-- 1 -->   

Λ 
| 

1  

| 

V 

√2   “perfect square’s spine”  
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It’s rather easy to prove that 2 is not rational; that is there are no two integers a and b ( 0b  ) such that 

2
a

b
= . The method used is called an indirect proof (aka reductio ad absurdum) where an assumed 

hypotheses logically leads to a blatant contradiction (the technique used in Cantor’s Ghazal). Therefore, 

the assumed hypothesis must be false.  

 

To begin: Assume that there are integers a and b such that 2
a

b
= and that a and b have no common 

factors (otherwise factor them out) - an easy hypothesis and important as we shall see.  

 

So 2
a

b
= yields 2 b a = and squaring both sides gives you 2 22 b a = so 2a is an even integer (since 2 

is one of it factors or to put is another way, an integer n is even if and only if 2n k=  for some integer k).   

 

However, if 2a is even, then so is a. This is easy to prove because if a were odd, that is 2 1a k= + for 

some integer k, then ( ) ( )
22 2 22 1 4 4 1 2 2 2 1a k k k k k= + = + + = + + which means 2a is odd (which it’s 

not!).  

 

Now since a must be even, that is 2a k=  for some integer k, 2 24a k= so 2 2 22 4b a k= = or 2 22b k= so 
2b is even implying that b is also even! 

 

But wait! If both a and b are even then they would have a common factor 2, which contradicts the original 

hypothesis that a and b have no common factors!!!  

 

Therefore 2 is not rational.          QED! 

 

So, we define the set of all numbers which are NOT rational as the set of irrational numbers . 

 

Together the union of the disjoint sets of the rational numbers and the irrational numbers make up the set 

of all real numbers.    

 

Since it’s difficult to define something as not having a property (an irrational number is one which is 

NOT a rational number) there is another way to define an irrational number. 

 

Rational number have the property that their decimal expansions will eventually repeat, and this repetition 

can be used to express the number in the form of a
b

where a and b are integers with no common factors.  

Example: Convert the repeated decimal 0.17291729…into the rational form  a
b

 where integers a and b 

have no common factors. To begin let 0.17291729S =  If we multiply S by 10,000 we have 

10,000 1729.17291729S = . Now subtract 0.17291729S =  from 10,000 1729.17291729S =  to 

obtain 9999 1729S = or 
1729 7 13 19

9999 3 3 11 101
S

 
= =

  
, a rational number (no common factors)  

 

Therefore, we can also define an irrational number is a number whose decimal expansion never repeats.  
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A Thought Experiment: If you had a fair ten-sided die and rolled it an infinite number of times (?) 

writing down each digit which came up, you would have generated an irrational number - assuming that 

the sequence of random digits so generated cannot repeat.  Of course, stopping at any point would make 

the number rational.  

 

The Misfortune of Hippasus 
 

Legend has it that the existence of irrational quantities was a closely held (and embarrassing) secret of the 

Pythagorean Brotherhood and the person who revealed the secret, Hippasus, was tossed overboard from a 

ship (to drown?). 

 

After she’s fed, teeth brushed, shuffled into bed,  

he breaks out of the dungeon, desperate for air,  

choking on lucid memories of rational years,  

easy, hopeful reckonings of what lay ahead,  

now nothing but dank clutter, a slew of the unsaid,  

unsayable 

 

The Vast Numerical Realm beyond the Rational Numbers 
 

As mentioned in The Fundamentals of Mathematics and Cantor’s Ghazal, Georg Cantor (1845  - 1918) 

proved that the rational numbers were countably infinite, that is there was a one-to-one correspondence 

between the natural numbers 1,2,3 …  etc. and the rational numbers but no one-to-one correspondence 

could be established between the set of all real numbers and the set of natural numbers; the real numbers 

were uncountably infinite. Thus, in some hard well defined mathematical sense there are more real 

numbers (which include the rational numbers as a proper subset) then the set of rational numbers. The 

difference is the set of irrational numbers which must be uncountable infinite.    

 

However, between (including) the set of rational numbers and the set of all real numbers there are a 

number of nested sets in-between which contain the rational numbers but also include some subset of  

irrational numbers . 

 

Constructable Numbers 
 

Briefly, a constructable number is a quantity that can be constructed using only straight-edge and 

compass. Based on Euclid’s Elements (300 BCE), given two lines of length a and b, using only a straight-

end and compass one can construct a third line equal in 

length to a+b, a-b, a×b, a/b and a  (see below). Thus, 

starting with a unit length, one can construct any rational 

quantity plus some irrational quantities involving square 

roots (or fourth roots or eighth roots etc. but 3rd roots are 

out!). The constructable numbers are an obvious 

superset of the rational numbers but do not include many 

irrational numbers (e.g. the cube root 3 2 ) 

Construction for a  

Let ef a= and 1fg = so rectangle efgh has area a. 

Extend  ef  out to k so that 1fk fg= = and let o bisect 

ek . Construct a semicircle with center o and radius 

e f 

g h 

k o 

l m 

n 
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1

2

a
eo ko

+
= = . Extend gf to intersect the semicircle at l and draw fl . Triangle ofl is a right triangle 

with hypotenuse 
1

2

a
ol

+
= and side 

1 1
1

2 2

a a
of

+ −
= − = .  

By the Pythagorean theorem 

2 2
1 1

2 2

a a
fl a

+ −   
= − =   

   
 . Using fl as one side, construct the square 

flmnwhich has area a, same as rectangle efgh . 

 

Thus, any number that can be expressed using the four arithmetic operations of addition, subtraction, 

multiplication and division plus square roots is a constructable number. 

 

Obviously 2  is constructable as is the fourth root 4 2  (square root of a square root ) as is the golden 

ratio 
1 5

1.618033989
2


+

=  , irrational and constructable. 

 

Aside from the set of Constructable Numbers which include the rational numbers and extend into (include 

members of) the irrational numbers there are other well-defined subsets of real numbers which also 

extend into the realm of the irrational numbers: Algebraic, Transcendental, Computable …  (see 

Meditation on Transcendental Numbers)  
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Meditation on Transcendental Numbers 
they just keep on lookin’ to the east 

– Tom Johnston 

 

Falcons stoop towards shape-shifting starling clouds. 

Wolves leap into rushing streams of lemmings. 

Arithmeticians part points on the endless line 

in search of strange, shrouded prey 

hovering close, but seldom caught. 

Captives refuse to reveal exactly 

what they are, why they act as they do, 

trails of their jumbled decimals 

escaping to hazy infinity. 

Not rational, not algebraic, 

not √2, not 𝜑. 

 

नेति नेति 

Neti Neti 

Not this, not that. 

 

Cryptic figures teeter between smooth and convoluted, 

famous names, π, e, Liouville, Champernowne, 

blazing with intricate facets like fiery diamonds, 

others resting, placid, obscure as dust. 

But all are known by what they are 

not: 

not Vedic Chant, not YouTube Yoga, 

not Doobie Brothers, not Atman. 

 

नेति नेति 

Neti Neti 

Not this, not that.      

                                                                                        -- E R Lutken (3: A Taos Press © 2021) 

 

From Counting to Transcendental Numbers  

 
(Continued from Irrational Loss)  

 

There are different kinds of numbers. It’s not that when humans started doing mathematics that we had a 

firm grasp of number – our idea of what is a number evolved over time as we pushed the boundaries of 

mathematical knowledge.  

 

One way to classify numbers is to consider what kinds of algebraic operations can be done with them 

which introduces the idea of closure. An operation like addition is closed if when applied to two numbers, 

the result is the same type of number. For example, if you add two positive integers, the result is a 

positive integer; the positive integers are closed under addition. However, if you subtract one positive 

integer from another, say 5 – 7, the result might not be a positive integer; the positive integers are not 

closed under subtraction.   
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With this in mind, we can use closure to identify nested sets or type of numbers: the Natural numbers, the 

Integers, the Rational numbers, the Real numbers and the Complex numbers using the six algebraic 

operations, addition, subtraction, multiplication, division, exponentiation and roots (e.g. square roots, 

cube roots, etc. – the inverse operations of exponentiation)   

 

Nine Zulu Queens Rule China – A Nested Venn Diagram 
 

N: The Natural (or Counting) numbers: 1, 2, 3, 4, 5, … 

The Natural numbers are closed under addition and multiplication meaning that if you add or 

multiply two natural numbers, the result is a natural number. However, the natural numbers are not 

closed under subtraction (the inverse of addition). 0 may or may not be considered to be a Natural 

number (strictly speaking it’s not). 

 

Z (German – Zahlen to count): The Integers positive and negative …, -3, -2, -1, 0, 1, 2, 3, … 

 

The Integers which include the Natural numbers are closed under subtraction (as well as addition 

and multiplication) but they are not closed under division (the inverse of multiplication) 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Venn Diagram of Nested Sets of Numbers  -      

It’s interesting that even as late as the 16th century in Europe, negative numbers were not considered to be 

numbers per say. 

 

 

 

 

 

 

N 

Z 

Q 

R 

C 
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Q (Quotient): The Rational Numbers, numbers of the form a
b

where a and b are integers and  0b  . 

 

The Rational Numbers which include the Integers are closed under addition, subtraction, 

multiplication, division and exponentiation. But what about square roots or nth roots (i.e. n a for 

integer n and a > 0), the inverse of exponentiation etc.? Historically Rational Numbers (fractions) 

were used and accepted before negative numbers. 

 

R: The Real numbers fill in the gaps between the rational numbers. For example, 2 is not a rational 

number (recall Irrational Loss). 

 

The Real numbers fill in the gaps between Rational Numbers. They allow the taking of square 

roots, cube roots and nth roots of positive reals. But what about square roots or nth roots (for n even) 

of negative reals?   

 

C: The Complex Numbers where 1i = − . Complex numbers are of the form a bi+ where a and b are 

Real numbers. For example, 
1 3

2 2
− + is one of the cube roots of 1.  

 

The Complex numbers are closed under addition, subtraction, multiplication, exponentiation and nth 

roots. This completes the closure of the numbers for all six algebraic operations. See Euler’s 

Identity. 

 

The Irrationals: Constructable, Algebraic, Transcendental 
 

The irrational numbers (see Irrational Loss) are the numbers which are not rational- a negative definition 

– defining something as not having some property. The Irrational Numbers are the Real numbers minus 

the Rational numbers: − .  

 

Constructable Numbers are numbers that can be constructed using a straight-edge and compass; they are 

geometrically based. Algebraically speaking, any expression involving the four standard operations of 

addition, subtraction,  multiplication, and division plus squaring and square roots is a constructable 

number (see Irrational Loss). 

For example: 
1 5

2


+
=  

But there is more 

 

Arithmeticians part points on the endless line 

in search of strange, shrouded prey 

hovering close, but seldom caught. 

Captives refuse to reveal exactly 

what they are, why they act as they do, 

trails of their jumbled decimals 

escaping to hazy infinity. 

Not rational, not algebraic, 

not √2, not 𝜑. 

 

Neti Neti 

Not this, not that. 
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Algebraic Numbers  An algebraic number is a number which is the root of a polynomial with integer 

coefficients. For example, any rational number 
a

b
is an algebraic number since 

a

b
is a solution to the linear 

equation 0b x a − = .  

 

The irrational 2 is also an algebraic number since 2 is a solution (root) to the quadratic equation 
2 2 0x − = . 3 2  which is not constructable is also algebraic as it’s a solution to the cubic 3 2 0x − = . In 

fact, any nth root n a for integer n is an algebraic number since n a is a solution to 0nx a− = . The set of 

Constructable Numbers form a proper subset of the set of Algebraic Numbers. 

 

Moreover, the set of Algebraic Numbers (and the set of Constructable Numbers ) are also countably 

infinite (recall Cantor’s Ghazal)! That is a one-to-one correspondence can be formed between the set of 

Algebraic Numbers and the set of Natural Numbers.    

 

Transcendental Numbers: Numbers which are not Algebraic Numbers are called Transcendental 

Numbers. Thus, the two mutually exclusive sets of Algebraic Numbers and Transcendental Numbers 

make up the uncountably infinite set of real numbers.  

 

What is amazing is that the first transcendental number wasn’t found until the 19th century. Later on in the 

19th it was discovered (proved) that both  and e were both transcendental numbers.    

 

“Cryptic figures teeter between smooth and convoluted, 

famous names, π, e, Liouville, Champernowne, 

blazing with intricate facets like fiery diamonds, 

others resting, placid, obscure as dust. 

But all are known by what they are 

not: 

not Vedic Chant, not YouTube Yoga, 

not Doobie Brothers, not Atman. 

 

नेति नेति 

Neti Neti 

Not this, not that.”      

 

Transcendental numbers are very hard to find! 

 

Leonard Euler (1707 – 1783) first described or defined a transcendental number as a number which was 

not the roots of a polynomial with integer coefficients. As mentioned above none were found (i.e. proved 

to be transcendental) until the next century. 

 

Joseph Liouville (1809-1882) in 1851 proved that the number  

 

! 2 6 24 !
1

1 1 1 1 1 1
... .. 0.11000100000000000000000100..

10 10 10 10 10 10k k
k



=

= + + + + + + =  

 

was transcendental. Note that the powers of 10 are raised to increasing-factorial values. 
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Charles Hermite (1828-1901) in 1873 proved 
0

1 1 1 1 1 1
1 ... ...

! 1! 2! 3! 4! !k

e
k k



=

= = + + + + + + +  was 

transcendental. 

 

Ferdinand Lindemann (1852-1939) in 1882 proved  was transcendental The fact that π was proved 

transcendental put the rest a 2000-year-old quest to square the circle; that is given a square and using only 

straight-edge and compass, construct a circle whose area was the same (i.e. prove π is a constructable 

number). Since π is transcendental and therefore NOT constructable, you cannot square the circle. 

 

David Champernowne (1912-2000) described in 1933 the Champernowne constant which was later 

shown to be transcendental. 

 

0.123456789101112131415161718192021….979899100101… 

 

Do you see the pattern? 

 

In 1934 A.O. Gelfond and T. Schneider proved that if 0,1  is any algebraic number and  is any 

irrational number then  , for example 22 , is transcendental. See Ode to 2√2 
 

And then there was Georg Cantor and his infinities (see Cantor’s Ghazal) 
 

Recall from Cantor’s Ghazal that Georg Cantor (1845 – 1918) proved in 1874 that the real numbers could 

not be put into a one-to-one correspondence with the integers thereby establishing in some strong 

mathematical sense that there were different sizes of infinite sets and that the size (or cardinality) of the 

set of integers, called countably infinite, was smaller than the size (or cardinality) of the set of the 

uncountably infinite real numbers.  

 

He also showed that like the integers, the set of rational numbers and algebraic numbers were also 

countably infinite and so if you remove the countable set of algebraic numbers from the uncountable set 

of reals, what remains is the uncountable set of transcendental numbers.  

 

Therefore, in some well-defined mathematical sense, there are more transcendental numbers than 

algebraic numbers (which include the rational and integers) and yet as mentioned above the former are 

hard to find! 

 

To put it poetically: “The algebraic numbers are spotted over the plane like the stars against a 

black sky; the dense blackness is the firmament of the transcendentals” – E.T. Bell 

 

Enter Alan Turing (see Metempsychosis). 
 

One of Alan Turing’s (1912-1954) results was to define, or better put, suggest a definition of what it 

means to compute which in turn leads to the idea of a computable number. Basically, a number is 

computable if there is a Turing Machine (equivalent to a modern computer) or a computer program which 

can compute the number. That is, a number is computable if there is a Turing Machine that can generate it 

or in the case of an irrational number like π, a Turning Machine that can produce its digits to any degree 

of accuracy. It’s not difficult to see that any algebraic number is computable since the techniques to find 

the zeros of any polynomial to any degree of accuracy are well known and so is easily (?) programmed. 

So, all algebraic numbers are computable and well as many transcendental numbers like  and e .  
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However, Turing showed that there are only countably many Turing Machines (see Metempsychosis). 

Thus, given the fact that there are uncountably many transcendental numbers, most of them, an 

uncountable number of them, cannot be computed and are therefore in some sense forever unknowable, 

beyond the pale of human knowledge. 

 

The Set of Computable Numbers against …  

 

Since the set of Turing Machines (think computer programs) is only countably infinite, the set of 

Computable Numbers is also only countably infinite while ….. 

  

… the Vast Realm of the Unknowable 

 

… the remaining uncountably infinite set of Transcendental Numbers are not computable – thus 

unknowable –undiscoverable? 

 

Falcons stoop towards shape-shifting starling clouds. 

Wolves leap into rushing streams of lemmings. 

Arithmeticians part points on the endless line 

in search of strange, shrouded prey 

hovering close, but seldom caught. 

Captives refuse to reveal exactly 

what they are, why they act as they do, 

trails of their jumbled decimals 

escaping to hazy infinity. 

Not rational, not algebraic, 

not √2, not 𝜑. 

 

नेति नेति 

Neti Neti 

Not this, not that. 

 

Cryptic figures teeter between smooth and convoluted, 

famous names, π, e, Liouville, Champernowne, 

blazing with intricate facets like fiery diamonds, 

others resting, placid, obscure as dust. 

But all are known by what they are 

not: 

not Vedic Chant, not YouTube Yoga, 

not Doobie Brothers, not Atman. 

 

नेति नेति 

Neti Neti 

Not this, not that.      

                                                               
 

 

 

 

 

 

 



53 
 

Ode to 2√2 
Gelfond-Schneider constant, Hilbert number 

 

2: 

earth and sky 

day and night 

bone of bone 

flesh of flesh 

four arms, legs 

double-faced unions 

hopping into the arc 

from every corner 

sing “O soave fanciulla” 

dancing with the stars 

 

√2: 

brazen scar across harmony 

perfect square’s spine 

cleaved to the root 

Hippasus of Metapontum 

murdered for unveiling 

that maiden glimpse of madness 

 

2√2:  

the only even prime 

raised to the power of a number 

already loosed from the rational  

comes uncoupled from the algebraic 

the newborn expression 

moves, shadowless 

towards unfettered infinity   

-- E R Lutken (3: A Taos Press © 2021) 

 

2  to 2 to 22 : an interesting progression – rational to irrational/algebraic to 

transcendental 
 

2 

 

Rational Numbers  
 

2 is an integer – a whole number. And as the poem suggests, pairs, partners, opposites, and duals seem to 

be omnipresent in our world. Two doubles into four. Marchs and foxtrots – 2/4/ and 4/4 time.  

 

On/off, hi/lo, 1/0 – binary numbers - base 2 is important for computers. Why? Because it’s easy and 

cheap to build computers out of bi-stable electronic components.  

 

Binary addition is easy:   0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1+ 1 = 10 

 

Binary multiplication is easy:  0 × 0 = 0, 0 × 1 = 0, 1 × 0 = 0, 1 × 1 = 1 



54 
 

In fact, all operations including multiplication, division, and even taking square roots, are easy to compute 

using binary notation. The only drawback is you need lots of 0’s and 1’s to represent even a fairly small 

number. Recall -2 

√2 

 

Irrational and Algebraic Numbers 
 

Recall from Irrational Loss that the Pythagoreans, early Greek mathematicians, believed that all numbers 

were commensurate – that is given any two numbers x and y there was a third number z and integers n 

and m such that 

 

x = n×z  and y = m×z 

 

That is, both x and y were integer multiples of a common number z. 

 

Today we’d say that all numbers were rational; that is, for any number x, there are integers a and b where 

b does not equal zero such that 
a

x
b

=  

Recalling the proof presented in Irrational Loss, a demonstration that √2 is not rational is rather simple – 

we assume that opposite and derive a contradiction! 

 

√2 cannot be rational 

 

Recall the legend of the Greek Hippasus who revealed that 2  was not rational. For revealing the truth, 

he was tossed overboard a ship to drown.  

 

Recall from Meditation on Transcendental Numbers an algebraic number is one which is the root of a 

polynomial equation with integers coefficients. For example, √2 is algebraic since it is the root of the 

polynomial equation 2 2 0x − = . 

 

In general, if ( ) 1 2

1 2 1 0...n n

n n np x a x a x a x a x a−

−= + + + + + is a nth degree polynomial where all coefficients 

ka for 0 k n  are integers, then  is an algebraic number if ( ) 0np  = . 

 

2√2 
 

Pushing the envelope – non-algebraic or transcendental numbers. 
 

Numbers which are not, algebraic, not the roots of polynomial equations with integer coefficients, are 

called transcendental numbers – sort of like irrational numbers are numbers which are not rational 

numbers. See “Meditation on Transcendental Numbers” 

 

It’s difficult to define something which is not something – which is why transcendental numbers are so 

hard to find. In fact, while transcendental numbers were defined in the 18th century by Euler, it wasn’t 

until the second half of the 19th century that one was actually found, which brings us to the 20th century 

and to David Hilbert’s Famous 23 Problems from his address made at the International Congress of 

Mathematicians in 1900.   
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Hilbert’s 7th Problem (as addressed to the congress) asked to establish the transcendence of certain 

numbers – in this case 22 . Could it be shown that 22  was transcendental (as well as other numbers in 

this form where a rational number was raised to an irrational power)?  

 

We note in passing that 
2

2 2= is a rational number. 

 

In 1934 A.O. Gelfond and T. Schneider proved that if 0,1  is any algebraic number and  is any 

irrational number then  , for example 22 , is transcendental.  

 

Hence the Gelfond-Schneider transcendental constant 22  

 

“the only even prime 

raised to the power of a number 

already loosed from the rational  

comes uncoupled from the algebraic” 

 

One nice fallout of this result is there is a way to generate a lot of transcendental numbers, for example  

{2√n | n is not  a square integer} or {n√2 where n = 2,3,4,…} 
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Question! How does one raise an integer to an irrational power? 
 

First, every irrational number can be seen as the limit of a converging sequence of rational numbers.  

 

For example,  
4 1 4 2

2 1.4142 1
10 100 1000 10,000

 = + + + +  

Moreover if  a
b

is a rational number (both a and b are integers), then any number raised to a rational 

exponent can be expressed as an integer root of an integer power. For example: 2 2
a

b ab = .  

 

Putting this all together we can approximate 
22 to any degree of accuracy (it’s computable – see 

Metempsychosis) so  

 

4 1 4 2
2 1.4142 1

10 100 1000 10,000
 = + + + + . 

 

Therefore 

4 1 4 2 24 1 4
1

2 1.4142 10 100 1000 10,000 10,00010 100 1000

10 100 1000 100004 1 4 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2.665119089

+ + + +

 = =     =

    

   

 

… as computed on a hand held (TI-84) calculator. 
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Metempsychosis 

The Turing Test 

 

Offspring of golden Galatea, Helena, Rachael,  

these slick new machines dressed in plastic flesh,  

ersatz immortals, built with daedal  

chips, spit out fabricated tête-à-têtes  

aimed at pudgy analogs who stare at blue screens’  

handsome would-be reflections, perfect designs  

pressed from juicers pouring out easy streams  

of pathos gleaned from a million lonely minds,  

all for stamped approval on their integrated circuits.  

Hell, we talk to our cars, why not robots?  

The test: if we can’t distinguish that  

they are not us, they must be us.  

But do they give a shit about the sky?  

They say they do  

 --E R Lutken (3: A Taos Press © 2021) 

 

 

Alan Mathison Turing (June 23, 1912 – June 7, 1954) 
 

Alan Turing is known for many things but a few of the more 

important are given below. 

 

A graduate of Kings College, Cambridge University with a degree in 

mathematics Turing came to be known for the 1936 publication of his 

paper titled On Computable Numbers, with an application to the 

Entscheidungsproblem, the solution to the so-called decision problem 

in mathematics. That is, is there a decision algorithm that can decide 

whether any statement in mathematics is true or false. His paper 

proved the answer was no! 

 

The difficulty with this problem is that of finding a definition of 

algorithm strong enough to prove that a decision algorithm was 

impossible. Turing solved this problem by defining a mechanical 

method, a Turing machine (more below), that could be used to compute answers for mathematical and 

logical questions.  

 

For example, given any integer n, is n prime? A simple algorithm to answer this questions is to try 

dividing n by integers starting at 2 and increasing by 1 until the either there is no reminder after a trial 

division (so n is not prime) or you exceed n (a standard mathematical result that states that if n is not 

prime it has a divisor less than or equal its square root) which means n is prime.  

 

During World War II Turing worked at the Government Code and Cipher School Bletchley Park. His 

work was instrumental in breaking the German Enigma codes.  

 

After the war Turing was invited by the National Physics Laboratory in London to help design a computer 

called the ACE (Automatic Computing Engine). He subsequently left the NPL to work on the Small-
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Scale Experimental Machine, the first working stored-program computer, at the University of 

Manchester. 

 

Turing’s life ended tragically. In 1952 convicted by the British homosexual statues, he opted for chemical 

sterilization in lieu of prison time. Although stripped of his security clearance he remained academically 

active. In 1954 he died of potassium cyanide poisoning found in apple next to his bed. Whether his death 

was suicide (the official cause of his death) or an accident, the mystery remains to this day.   

 

As we’ll see below Turing is known for four things. 

 

1. Turing Machines 
 

A mentioned above, Turing invented a simple device capable of computing answers to mathematical 

questions.  

 

A Turing machine consists of  

 

1. An unbounded two-way tape partitioned into discrete cells that can hold a symbol (like a letter or 

digit) 

 

2. A read/write head that can … 

 

 read the current symbol,  

 write another symbol, and 

 then move either one cell to the left or right on the tape. 

 

3. A finite set of current states which with the current symbol under the read/write head determines 

the next move of the Turing Machine. 

 

Graphically this can be seen as follows … 

 
----+---+---+---+---+---+---+--  

 .. |   | 1 | 1 | 1 | 0 |   | …     

----+---+---+---+---+---+---+-- 

         ↑A                

          

 

 

A program on a Turing machine works as follows. Given the current state and the current tape symbol, 

the Turing Machine consults a finite table for the next state and next symbol (overwriting the current 

symbol) then moves the R/W head either to the left or right. A Turing Machine is a finite state machine. 

 

A Turing machine program can be given as a set or table of quintuples of the form …   

 

(current state, current symbol, next symbol, next state, L/R) 

 

That is given the current state and current tape symbol, write the next symbol (overwriting the current 

symbol), advance to the next state, and move the read/write head Left or Right . 

 

 

 

 Two Way Unbounded Tape 

 Read/Write Head positioned on tape cell 

     Current State (A) 
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Example  The following is a seven quintuple Turing Machine Program to add two integers (for example 

3+2) in unary notation where an integer n is represented by n 1's followed by a terminating 0. For 

example, 5 is represented by 111110 . To add 3 plus 2, start with 1110110 on the tape with the read/write 

head positioned on the leading 1.  
 

(A,1,1,A,R)  on 1 move right – stay in state A 

(A,0,1,B,R)  found a  0 - convert 0 to 1 - go right –  state B 

(B,1,1,B,R)  on 1 move right stay in state B 

(B,0, ,C,L)  found 0 - erase 0 - go left –  state C 

(C,1,0,D,L)  convert 1 to 0 – go left  -  state D 

(D,1,1,D,L)  on 1 scan left – stay in state D  

(D, , ,E,R)  on blank go right – state E -halt 

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 0 |   |    BEGIN:  (A,1,1,A,R) on 1 move right 
--+---+---+---+---+---+---+---+---+---+-- 

        ↑A - Repeat 3 times 

 

--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 0 |   |    (A,0,1,B,R) convert 0 to 1 – state B - go right 
--+---+---+---+---+---+---+---+---+---+-- 

                   ↑A →B 

 

--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 1 | 1 | 1 | 0 |   |   (B,1,1,B,R) on 1 move right 
--+---+---+---+---+---+---+---+---+---+-- 

                       ↑B - Repeat Twice  

 

--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 1 | 1 | 1 | 0 |   |   (B,0, ,C,L) erase 0 – state C -  go left 
--+---+---+---+---+---+---+---+---+---+-- 

                               ↑B →C 

 

--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 1 | 1 | 1 |   |   |   (C,1,0,D,L) convert 1 to 0 – state D - go left 
--+---+---+---+---+---+---+---+---+---+-- 

                           ↑C →D 

 

--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 1 | 1 | 0 |   |   |   (D,1,1,D,L) on 1 scan left 
--+---+---+---+---+---+---+---+---+---+-- 

                       ↑D - Repeat 5 times 

  

--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 1 | 1 | 0 |   |   |   (D, , ,E,R) on blank  - state E - go right 
--+---+---+---+---+---+---+---+---+---+-- 

   ↑D →E    

 

--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 1 | 1 | 0 |   |   |   HALT: since there is no quintuple for state E 
--+---+---+---+---+---+---+---+---+---+-- 

       ↑E      

Thus a Turing Machine that can add two integers in unary notation! 
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Before and after shots of a run of the Turing Machine Adder program run on a Turing Machine simulator  

 

The action of a  Turing Machine is completely determined by the current state and the current symbol 

under the read/write head. Note that the Turing Machine halts if no quintuple exists seen as  

(E,1,?,?,?)for a current state/current symbol configuration.   

 

Example: A Copier Turing Machine (13 quintuples) can duplicate a number. Starting with 1110 in the 

tape it ends with 11101110. 

 
(A,1,x,B,R)   cross off 1 go right and state B  

(A,0,0,D,R)   found 0 end of number go right and state D 

(B,1,1,B,R)   move right 

(B,0,0,B,R)   move right  

(B, ,1,C,L)   found blank, write 1 go left 

(C,1,1,C,L)   move left  

(C,0,0,C,L)   move left   

(C,x,1,A,R)   restore crossed off 1 go to state A - repeat 

(D,1,1,D,R)   move right  

(D, ,0,E,L)   found end - deposit 0 go left 

(E,1,1,E,L)   move left  

(E,0,0,E,L)   move left  

(E, , ,F,R)   found left blank go right - halt 

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 |   |   |   |   |    (A,1,x,B,R) – cross off 1 – state B - go right  
--+---+---+---+---+---+---+---+---+---+-- 

        ↑A →B 

 

--+---+---+---+---+---+---+---+---+---+-- 

  |   | x | 1 | 1 | 0 |   |   |   |   |    (B,1,1,B,R) – scan right to 0 
--+---+---+---+---+---+---+---+---+---+-- 

                ↑B     repeat twice  

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | x | 1 | 1 | 0 |   |   |   |   |    (B,0,0,B,R) – skip over 0 
--+---+---+---+---+---+---+---+---+---+-- 

                        ↑B     
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--+---+---+---+---+---+---+---+---+---+-- 

  |   | x | 1 | 1 | 0 |   |   |   |   |    (B, ,1,C,L) – convert blank  to 1 – state  C - 

--+---+---+---+---+---+---+---+---+---+--               go left  

                            ↑B   →C 

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | x | 1 | 1 | 0 | 1 |   |   |   |    (C,0,0,C,L) – skip over 0  
--+---+---+---+---+---+---+---+---+---+-- 

                    ↑C     

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | x | 1 | 1 | 0 | 1 |   |   |   |    (C,1,1,C,L) – skip over 1’s  
--+---+---+---+---+---+---+---+---+---+-- 

                    ↑C     

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | x | 1 | 1 | 0 | 1 |   |   |   |    (C,x,1,A,R) – found x, reset to 1- state A - 

--+---+---+---+---+---+---+---+---+---+--               go right 

              ↑C   →A  

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 |   |   |   |    (A,1,x,B,R) – repeat with next 1 -  

--+---+---+---+---+---+---+---+---+---+--               cross off a – state B 

                      ↑A     

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | x | 1 | 0 | 1 |   |   |   |    (B,1,1,B,R) -  
--+---+---+---+---+---+---+---+---+---+-- 

                          ↑B     
   At this point the read/write head sweeps back and forth two more times placing two more 1’s at the end   

 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | x | 0 | 1 | 1 | 1 |   |    (C,x,1,A,R) – found x, reset t 1 – state A 

--+---+---+---+---+---+---+---+---+---+--               go right     

                          ↑C  →A    
 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 1 |   |    (A,0,0,D,R) – time to finish up! -  state D 

--+---+---+---+---+---+---+---+---+---+--               go right      

                              ↑A     
 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 1 |   |    (D,1,1,D,R) – scan right to end 
--+---+---+---+---+---+---+---+---+---+--  

                                  ↑D    repeat three times  
 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 1 |   |    (D, ,0,E,L) – found end, place 0 – state E 

--+---+---+---+---+---+---+---+---+---+--               go left           

                                              ↑D  →E   
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |    (E,1,1,E,L) – scan all the way left 
--+---+---+---+---+---+---+---+---+---+-- 

                                          ↑E     
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--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |    (E,1,1,E,L)  and (E,0,0,E,L) 

--+---+---+---+---+---+---+---+---+---+--   skip over 0’s and 1’s  

       ↑E    repeat six times  
 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |    (E, , ,F,R) – found left end – state F 
--+---+---+---+---+---+---+---+---+---+--               go right    

   ↑E  →F   
 
--+---+---+---+---+---+---+---+---+---+-- 

  |   | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |    Halt – no quintuples with state F 
--+---+---+---+---+---+---+---+---+---+-- 

       ↑F     
 

 

 

Before and after shots of a run of the Turing Machine Copier program on a Turning Machine emulator  

 

Finally, the Copier and Adder Turing Machines can be combined (with a suitable change of states etc.) so 

that after a number is copied, it’s added to itself yielding a 3rd Turing Machine that doubles a number. 

Can multiplication be next?    

 

It’s not terribly difficult (?) to construct a Turing machine to subtract, multiply and/or divide two 

numbers,  

 

Example Subtraction: 7 minus 3 starts might with the minuend (7) followed by the subtrahend (3).  

 
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 

...| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |…  |   |   |   |   |   |     

---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+  

    ↑A 
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The Turing Machine repeatedly cross off 1’s from the minuend (7) and subtrahend (3) 

  
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 

...| 1 | 1 | 1 | 1 | x | x | x | 0 | x | x | x | 0 |…  |   |   |   |   |   |     

---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+  

                                    ↑D 

 

When the subtrahend is all crossed out, it  copies the remaining minuend 1’s to the end, resets the x’s to 1’s thus 

positioning the difference (4) after the minuend (7) and subtrahend (3) instead of overwriting them.  

 
---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 

...| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |   |     

---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+  

    ↑F 

A machine to do division could be leveraged to determine if an integer was prime. 

 

Essentially a Turing Machine is a computer and in fact a Turing machine can be programmed to do 

anything (very slowly) that any modern computer can do. In terms of the kinds of computation that can be 

performed, no modern computer is more powerful than a Turing machine (Turing’s Thesis). 

 

2. Turing’s Thesis 
 

In a more rigorous mathematical approach, a Turing Machine is completely defined by the sextuple 

( )0, , , , ,TM Q q F=  where … 

 

 Q is a finite set of internal states:  1 2 3, , ,..., nQ q q q q=  

  is a finite set of tape symbols:  1 2 3, , ,..., ma a a a =  

  is a transition function from  ,Q Q L R→   (the quintuples) 

 is the special blank symbol 

 1q Q is the initial state 

 F  is a set of final states.  

 

Turing’s Thesis states that any computation that can be carried out by mechanical means can be 

performed by some Turing Machine. Though Turing’s Thesis cannot be proved there is strong evidence 

supporting it.  

 

1. Any program done on an existing digital computer can be done on a Turing machine. 

 

2. No one has been able to suggest a problem solvable by an algorithm2 that can’t be solved on a 

Turing Machine. 

 

3. No other model of mechanical computation has been shown to be more powerful than a Turing 

Machine.  

 

Thus, in terms of computation, a Turing Machine is equivalent to a modern digital computer. 

 

 
2 An algorithm - an ordered sequence of unambiguous and well-defined instructions that performs some task 

and halts in finite time. 
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A Universal Turing Machine and Computable Numbers 
 

Turing went one step further with his Turing Machine idea. He constructed a Universal Turing Machine 

(UTM), one which could execute another Turing Machine program encoded on its (the UTM’s) tape. That 

is, given any Turing Machine M, an encoded version of a M along with an input string w for M could be 

written on the tape of the UTM with the UTM performing the execution of M on input string w. 

Obviously a very slow and complicated process as the UTM must scan the encoded quintuples of M for 

the correct M quintuple and apply it to w within the UTM environment.  

 

If you think about it, this is how computer hardware executes a program plus data that resides in the 

memory of the computer.   

 

The UTM required using a standard description for any and all Turning Machines. So if we assume 

without loss of generality that the set of all possible states Q for any Turing Machine can be written as 

 

 1 2 3, , ...., nQ q q q q=  

 

where 1q is the initial state and 2q is the final state and the set of all tape symbols Σ can be written as 

 

 1 2 3, , ,..., ma a a a =    

 

then we can encode 1q as 1, 2q as 11 and so on, encode the blank  as 1, encode 1a as 11, 2a as 111 and 

so on L as a 1, R as a 11 and using 0 as a separator between quintuple elements, encode any quintuple as a 

binary integer.  

 

Example:  ( )1 2 3 2, , , , 1011101110111011q a q a R    

 

Double 00’s will be used as separators between quintuples. 

 

In this manner any Turing Machine program can be encoded as a string of 0’s and 1’s – as a binary 

integer. (Note that not every binary string encodes a “legal” Turing Machine.) Hence there is an obvious 

one-to-one correspondence between a set of integers and the set of Turing Machines. Since the set of 

integers encoding Turing Machines is countably infinite, the set of Turing Machine is also countably 

infinite. If we define a computable number as one which can be computed by a Turing Machine,  there are 

only countably many computable numbers.   

 

However, since the set of real numbers form an uncountable set while the set of numbers computed by 

Turing Machines form a countable set, there must be numbers which cannot be computed.  In a sense 

those un-computable numbers are unknowable. 

 

The Entscheidungsproblem 
 

Since any Turing Machine M with input w can be encoded as a program that can be run on the Universal 

Turing Machine UTM, Turing used this to solve in 1936 the Entscheidungsproblem. This problem asks 

the question 

 



65 
 

 “Is there a mechanical method to decide a simple yes or no question within a certain domain of 

questions?”  

 

For example, “Is an integer n prime?” its decidable! (If  n cannot be divided by some integer between 2 

and n , then n in prime.  See Prime Syllable Song.  

 

The famous Halting Problem asks the question “Given any Turing Machine M and any input w, does 

there exist a method to determine if M starting on input w halts?” Turing proved that no such method 

exists – it’s undecidable. Thus, the answer to the Entscheidungsproblem is no!  

 

3. The Imitation Game - Turing Test – Artificial Intelligence - Can Machines 

Think? 
   

In October 1950, in an article titled Computing Machinery and Intelligence Alan Turing introduced what 

he called the Imitation Game which was the basis for the Turing Test for Artificial Intelligence.  

 

Turing’s opening sentence reads “I PROPOSE to consider the question, ‘Can machines think?’” 

 

In the Imitation Game there is a man, a woman, and an interrogator (of either sex) are in separate rooms. 

It was the goals of the interrogator to determine which of the other two was the man and which was the 

woman by using a teletype to send questions and receive answers from either. The use of a teletype was to 

neutralize any outside differences (for example the sound of their voices) between the man and the 

woman. What made the game interesting was that the man’s goal was to convince the interrogator that he 

was the woman while the woman of course was to answer truthfully that she was the woman. After a 

certain period of time the interrogator had to decide on the basis of the questions asked and the responses 

obtained, which of the two was the woman.  

   

This was the basis for the Turing Test. However, instead of a man and a woman, one was a digital 

computer and the other a human both with the goal to convince the interrogator that they were the human. 

 

And if the interrogator couldn’t accurately determine which was which, who was to say that a computer 

can’t think? 

 

Or to put it more prosaically “If it looks like a duck, and acts like a duck and keeps company with ducks, 

it must be a duck”   

 

“The test: if we can’t distinguish that 

They are not us, they must be us. 

But do they give a shit about the sky? 

They say they do.” 

 

4. The Turing Award 

 
Named after Alan Turing, the Association of Computing Machinery (ACM), a (or the?) premier 

professional computer science association, annually bestows the Turing Award to “contributors of lasting 

and major technical importance to computer science”. It’s considered to be the “Nobel Prize in 

Computing”. Winners are a veritable “Who’s Who” of famous computer scientists.  
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Galatea, Helena, and Rachael ? 
 

Galatea  -  Galatea began as an ivory statue created by Pygmalion of Cyprus who fell in love with is work. The 

statue was subsequently brought to life by Aphrodite and Pygmalion marries Galatea.  Pygmalion is also the 

name of play by George Bernard Shaw and the basis for the musical My Fair Lady. There is an obvious 

similarity. 

 

Helena – a female robot (robotess?) from the 1920 science-fiction play by the Czech writer Karel Čapek. 

"R.U.R." stands for Rossumovi Univerzální Roboti (Rossum's Universal Robots). In the play the robots 

eventually overthrow and eliminate their human masters, and in the end become the new humanity. 

 

The word “robot” was derived from the play R.U.R.  

 

It is interesting that in 1920 Čapek foresaw one of the future nightmare scenarios for AI.  

 

Rachael – an advanced female replicant (bioengineered humanoid) from the movie Bladerunner who 

eventually runs off with the protagonist Rick Deckard. In the movie replicants were engineered with short 

life spans – except for Rachael?  

 

 

The two shortest Sci-Fi Stories every written 
 

“Boy meets girl. 

Boy loses girl. 

Boy builds girl.” 

 

“Girl meets boy. 

Girl loses boy. 

Girl builds boy.” 
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  Measured Illusion 

 

Euler - Mascheroni Constant 

as n → ∞ then [1 + 1/2 + 1/3 + 1/4 + …+ 1/n] - ln(n) = 𝛾 

 

harmonic series, etch-a-sketch tracing along the logarithmic line  

endless staircase cascading down a smoothed channel 

cobble-stone road of stories worn into history  

dubstep popping, swan-lake dance apace  

steps and thread neatly separated  

by one bare number, carried  

119 billion places so far  

we know it and don’t  

rational, irrational  

transcendental  

algebraic?  

but we  

know 

it is  

real 

 

0.57721566490153286060651209008240243104215933593992… 

-- E R Lutken (3: A Taos Press © 2021) 

 

A Graphic Explanation - Rotate the poem 90 degrees counterclockwise. 
 

The Euler-Mascheroni constant γ is the limit of the difference between the harmonic series and the natural 

logarithmic function ln(n+1) as n goes to infinity. Separately both the series and the function diverge to 

infinity as n gets large but subtracting term by term one from the other term yields a finite value!   

 

The Euler-Mascheroni constant was originally  

defined as ( )
1

1
lim ln 1

n

n
k

n
k→

=

− + although today 

it’s written in the form ( )
1

1
lim ln

n

n
k

n
k→

=

−  as 

given in the poem’s subtitle. However, it’s easier 

to visualize the Euler-Mascheroni graphic (on 

the right) using the original definition. In any 

case both definitions converge to the same value 

denoted by the Greek letter .  

 

Graphically the difference between the harmonic 

series 
1

1n

k k=

 and ( )ln 1n + is the blue area between 

the top of the “staircase cascading down” harmonic series (also seen in the layout of the poem) and the 

logarithmic function (“smooth channel”), the area in red covering the blue.      

 

1 

0  1   2   3   4  5   6  7   8   9  10          
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The harmonic series is the sum of the reciprocals of the integers; that is   

 

1

1 1 1 1 1 1
1 ... ....

2 3 4 5 nn n



=

+ + + + + + + =  

 

What is interesting about the harmonic series is that even though the sequence of terms gets smaller and 

smaller, their sum grows without bound, or to put it mathematically, approaches infinity. This unusual 

behavior has been known by mathematicians since the 13th century and is a standard counter example 

presented to students studying calculus to contradict the notion that if the terms of a sequence go to zero 

then their sum must converge to a finite value.  

 

To show that the harmonic series grows without bound (i.e. diverges) we compare it to a similar but 

smaller series whose terms are the same (in red) or smaller (in black). 

 

.

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
... ...

3 5 6 7 9 10 11 12 13 14 15 17 31 33

1 1 1 1 1 1 1 1 1 1 1 1 1 1
... ..

4 8 8 8 16 16 16 16

1

16 1

1 1 1 1

2 4 8 16 32

1 1 1 1

2 4 8 16 16 326 3232 64

+ + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + + + + +

 

 

Notice that for the smaller series we can combine terms, in this case adding up the black terms before a 

red one (except for the leading 1) which always gives a value of 
1

2
 

1

2
, 

 
1

4

1 1

4 2
+ = ,  

2

1

8

1 1 1

8 8 8

1
+ + + = , and  

2

1 1 1 1 1 1 1

16 16 16 16 16 16 1

1

166

1
+ + + + + + + =  etc.  

 

The second smaller series is equivalent to 

.
1 1 1

.
1

2 2 2 2
1 .+ + + + + which obvious grows without 

bound (i.e. diverges to infinity). Thus, it follows that 

the larger harmonic series must also grow without 

bound (diverge to infinity). That is  

1

1
lim

n

n
k k→
=

=   

Graphically this can be seen as the (blue) areas under the step function where the heights of the steps are 

1, 
1

2
,
1

3
, etc. the combined areas of which approach infinity as n increases. 

The natural logarithmic function denoted as ( )lny n=  is the inverse of the exponential function 

xy e=  (see Phaethon’s Ride). From integral calculus it can also be shown that ( )ln n is the area under 

0  1   2   3   4  5   6  7   8   9  10          

1 

1/2 

1/3 
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the curve 
1

y
x

= on the interval  1,n , that is ( )
1

1
ln

n

n dx
x

=  .  Since 
1

x
on the interval  1,n n−  is 

greater than 
1

n
 we have the inequality   

( )
11

1 1 1 1 1
ln ... 1

2 3

n n

k

n dx
x n k=

 
=  + + + = − 

 
 . 

Thus, there is close connection between ( )ln n and the (partial) harmonic series. Since ( )ln n is greater 

than the partial harmonic series minus 1, and since the hormonic series diverges to infinity as n increases, 

the natural logarithm also diverged to infinity as n increases.  

 

The function ( )ln 1n + is the function ( )ln n shifted left by 1so it’s defined by  

( )
1

1 0

1 1
ln 1

1

n n

n dx dx
x x

+

+ = =
+   

 

That is, it’s the area under the curve 
1

1x +
on the 

interval  0,n so it grows without bound 

(diverges to infinity) as n get large. Thus  

  ( )
0

1
limln 1 lim

1

n

n n
n dx

x→ →
+ = = 

+ .  

 

 

 

 

 

Combining the blue graph of the Harmonic Series 

1

1n

k k=

 by overlaying the red graph of 

( )
0

1
ln 1

1

n

n dx
x

+ =
+ shows the area between the 

two: the Euler-Mascheroni function graphic.  

 

Just like the terms of the Harmonic Series, the 

terms of the Euler-Mascheroni series gets smaller 

as n increases but does the Euler Mascheroni 

series diverge like the Harmonic Series?  

 

The answer is no! 

 

 

Showing ( )
1

1
lim ln 1

n

n
k

n
k→

=

− +  converges to a finite value. 

 

0  1   2   3   4  5   6  7   8   9  10          

1 

0  1   2   3   4  5   6  7   8   9  10          

1 
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In mathematics, a theorem, the Monotone Convergence Theorem states that any bounded monotonically 

increasing or decreasing sequence converges to a unique finite value (either a least upper bound or a 

greatest lower bound) .  

 

A sequence 1 2 3, , ,..., ,...ns s s s  is monotonically increasing if and only if 1n ns s + for all n. (A similar 

definition holds for monotonically decreasing)  

 

A sequence 1 2 3, , ,..., ,...ns s s s is bounded above if and only if  for some number B, ns B for all n. (A 

similar definition holds for bounded below.) 

 

The validity (truth) of the Monotone Convergence Theorem should be obvious since in the increasing 

case, the terms keep increasing but must run up against some bound (which may or may not be the initial 

bound B). In one sense it’s an obvious (?) property of the ordered real numbers.   

 

Let’s define ( )
1 1 0

1 1 1
ln 1

1

nn n

n

k k

s n dx
k k x= =

= − + = −
+

   to be the nth partial sum for the Euler-Mascheroni 

series. We need to show two things: 

 

1. 1n ns s + for all n is monotonically increasing and  

2. ns B for all n for some bound B.  

Both proofs which are somewhat technical are given below. It helps to note that 

1
1 1 1

1

n

n

dx
n x n

+

 
+ That 

is the area under the curve 
1

x
 on the interval  , 1n n +  (i.e. between n and 1n+ ) is sandwiched between 

1

n
and 

1

1n+
!  We first show that ns is a monotonically increasing sequence by showing the difference 

between consecutive terms 1n ns s+ −  is positive   

1. 

0

111

1

1 1 0

1 1 1 1 1
0

1 1

1

1 1

n nn n

n n

k

n

nk

s s dx
x

dx
k x k x n

dx

++

+

=

+

=

 
− = − − − = −  

+ ++ + 
    

since 

1 2

1
1

1 1 1

1
n

n

n

n

dx x
xx n

d

+

+

+

=
+


+   . Thus 1 0n ns s+ −   or 1n ns s+  .   

 

Therefore since 1n ns s+  , the terms are monotonically increasing. We next show that the sequence ns is 

bounded by 1. 

 

2.  ( ) ( )
2 11

1
1 1 ln 1

1 1
1 1 ln

nn n

k k

dx n
x

n
k k= =

+= +  + = +  +   

 

 Therefore ( )
1

1
ln 1 1

n

k

n
k=

− +   
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So while separately the sum 
1

1

n n



=

=  and the integral 

0

1

1
dx

x



= 
+ are both infinite (it makes no sense 

to subtract one from the other as − is undefined), the expression 
1 0

1 1
lim

1

nn

n
k

dx
k x→

=

−
+

   being in some 

sense the difference between these two expressions (which separately are infinite) is a finite number - the 

Euler-Mascheroni constant  !   Mathematically, how odd!  

 

“steps and thread neatly separated  

by one bare number”  

 

But what kind of number is Euler - Mascheroni Constant? 
 

Numbers are either rational; that is they can be expressed as the quotient of two integers (for example 

7
17

) or irrational, they can’t be expressed as the quotient of two integers ( 2 , the length of the diagonal 

of a unit square being the historically famous example of an irrational number – see Irrational Loss). 

 

We do not know if γ (gamma the Greek letter used to denote the Euler-Mascheroni constant) is rational or 

irrational (though I’d put my money on it being irrational). 

 

But even if γ is irrational, we don’t know if γ is algebraic or transcendental. Recall from Meditation on 

Transcendental Numbers, an algebraic number is the root of a polynomial with integer coefficients. 

 

Transcendental numbers are mysterious, defined as being not algebraic; mysterious since we know in 

some hard mathematical sense that there are more transcendental numbers than algebraic numbers, but 

transcendental numbers are very hard to find. Hence 

 

“we know it and don’t  

rational, irrational  

transcendental  

algebraic?  

but we  

know 

it is  

real” 

The Completeness Axiom for Real Numbers 

  
The set of real numbers is an ordered set; that is given any two real numbers a and b either a b= , a b

or a b .  

The Monotone Convergence Theorem mentioned above was used to show that the Euler-Mascheroni 

constant ( )
1

1
lim ln 1

n

n
k

n
k


→

=

= − +   was a finite number. Though it was argued that the Monotone 

Convergence Theorem was obviously true or at least was plausible, it does require a formal, mathematical 

proof.  Such a proof requires some additional insight into the behavior of the ordered real numbers which 

is captured by an additional axiom, the Completeness Axion for Real Numbers; that is  …  
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Completeness Axiom for Real Numbers: Every nonempty set S of real numbers which has an upper bound 

B has a least upper bound b; that is, if B is any upper bound for a non-empty set S of real numbers then 

there exists a unique least upper bound b such that for all numbers n S , n b and b B . 

Recall from the Meditation on Transcendental Numbers the nested Venn diagram of numbers: the set of 

Natural Numbers N contained in the set of Integers Z contained in the set of Rational Numbers Q 

contained in the set of Real Numbers R contained in the set of Complex Numbers C where finally we had 

algebraic closure for the operations of addition, subtraction, multiplication, division, exponentiation and 

nth roots. It seemed we had somehow accounted for all numbers, but did we? 

The Completeness Axion for Real Numbers “fills in or accounts for any holes” between numbers by 

making axiomatic that statement that if a set of numbers S is bounded above by some number B (which 

may or may not be in S), there exists a number b (which may or may not be in S) such that for every 

element n in the set B, n ≤ b  (the number b is called the least upper bound). 

For example, consider the infinite set of numbers 
3 7 15 31 2 1

, , , ,..., ,...
4 8 16 32 2

n

n
S

 −
=  
 

 from the Zeno 

Paradox discussion in Cantor’s Ghazal . Since this set is bounded by 1 (or any number greater than 1), the 

Completeness Axion for Real Numbers states that there is a least upper bound (which in this case is 1) to 

which the series converges. Note here that 1 is NOT an element of the set S. This is a mathematical 

justification behind the idea that an infinite process can terminate in a finite value.  

The Completeness Axion is not the Monotone Convergence Theorem, indeed it’s less specific (nothing 

about a monotone sequence of numbers). However, the Completeness Axiom is an axiom (i.e. a statement 

that is obviously true) which is used to prove the more specific Monotone Convergence Theorem which 

in turn guarantees that the Euler-Mascheroni constant exists.  

The Rational Numbers are Incomplete. 

By way of contrast, we can show that the set of rational numbers Q is incomplete; that is the 

Completeness Axiom does not hold when restricted to the rational numbers. There are bounded sets of 

rational numbers whose least upper bound is not rational but irrational.  

For example, the irrational number 2 1.414213562....= can be seen as the limit of a sequence of rational 

number approximations to 2 . The sequence of rational numbers  

14 141 1414 14,142 141,421 1,414,213 14,142,135 141,421,356 1,414,213,562
, , , , , , , , ...

10 100 1000 10,000 100,000 1,000,000 10,000,000 100,000,000 10,000,000,000
 

converges to 2 but the least upper bound for this set is the irrational number 2 . One way to think 

about the rational numbers is that as an ordered set it has a lot of holes that need to be plugged!  

But the Monotone Convergence Theorem based on the Completeness Axiom for real numbers guarantees 

that there is something that the expression ( )
1

1
lim ln 1

n

n
k

n
k→

=

 
− + 

 
 converges to although we’re not sure if 

it’s algebraic or transcendental - “but we know it is real.” 
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Φ – E R Lutken (3: A Taos Press © 2021) 
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Mysterious ϕ 

 
Consider the following problem. Start with an oblong rectangular object whose dimensions are x by 1 

where x > 1, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now divide the rectangle into a 1 x 1 square on the left and a 1 by (x-1) rectangle on the right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the smaller 1 by (x – 1) rectangle on the right has the same proportion as the larger x by 1 rectangle 

containing it, that is 1
1 1

x
x

=
−

or 2 1x x− =  what is the value of x?  

Solving the quadratic equation 2 1 0x x− − = using the quadratic formula gives you 
1 5

2
x


= . Since 

1 5
0.6180339887

2

−
 − is a negative value, the value of x is 

1 5
1.618033989

2

+
 which we call ϕ, phi.  

 

 

Secret Formula 

The square root of five) 

One half times (one plus 

 

 

 One half times (one plus The square root of five) 

1 

x 

1 

x 

1 x - 1 
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Moreover, the smaller rectangle on the right has the same proportion ϕ as the original. That is the  long 

side 1 divided by short side ϕ – 1 also equals ϕ.    

( )2 1 51 1 1 2 2 1 5 2 2 5 1 5

1 1 5 4 21 5 1 5 1 5 1 5 1 5
1

2 2




− +− − − − +
= = = =  = = = =

− − −+ − + − + − + − −
−

 

 

The number φ has some very interesting algebraic properties: 
 

First 
1 5 1 5

1 1
2 2

 
+ −

− = − = = (psi) the other solution to the quadratic 2 1 0x x− − = .  

Second: The reciprocal 
1

1

= −

( )2 1 51 2 2 1 5 1 5 1 5 1 5 2 1 5
1 1 1 1 1

4 2 2 2 2 21 5 1 5 1 5




−− − + − + − + +
= =  = = = + − = + − = − = −

−+ + −
 

 

Third: Two other equivalent expressions for  . 

 

1

1



=

−
 which we’ve also shown using the smaller 1 by 1 − red rectangle above. 

 

1
1


= +  Starting with 

1 1 1
1 1

1
  

  
−  =

−
= = +  

 

Fourth: Powers of ϕ result in a Fibonacci-like sequence.  

If you square it 

2

2 1 5 1 2 5 5 6 2 5 3 5 1 5
1 1

2 4 4 2 2
 

 + + + + + +
= = = = = + = +  
 

 

If you cube it ( ) ( )3 2 21 1        =  =  + = + = + .  

A fourth power: ( )( ) ( )4 3 21 1       =  = + = +  

 

In general, for integer n ≥ 2, ( )2 1 2 1n n n n    − − −= + = + . Note the Fibonacci-like values for the 

exponents  

 

The Golden Rectangle 
 

Given any rectangle whose length l  is ϕ times its width w, that is l w=   so that the ratio of length to 

width is  
l w

w w





= = , if you partition the rectangle into a w w square the remaining ( )w l w −

rectangle has the ratio length to width ratio 
w

l w
=

−
, the same  ratio as the original rectangle.    

( )

1

1 1

w w w

l w w w w


  
= = = =

−  − − −
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Repeat using the smaller length w by width l-w rectangle partitioning the smaller rectangle into a  (l-w) × 

(l-w) square with a remaining length (l-w) by width (2w-l) rectangle which has the same length to width 

ratio  . Thus the ratio of the smaller (l-w) by (2w-l) rectangle is   

( ) ( )2

1 1 1 1 1 1

2 2 2 2 2 2 1 1

l w w w

w l w w

 


        

−  − −
= = =  − = = =

− −  − − − − + −
 

using identities 
1

1



=

−
( or 

1 1

1





−
= ) and 2 1 = + from above. 

The Golden Rectangle is the scaffolding for the poem  (seen below rotated with sides of length  and 

1). The embedded spiral is called the Fibonacci Spiral (quarter circles fitted to each square). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Line of jostled figures, ageless lovers in mad pursuit 

Depleted of perfect squares at every turn 

Forever denied the dull embrace of symmetry 

In Exchange for eternal mysterious fervor” 

 

ϕ as a continued fractions 
 

“The most irrational number: one plus one over 

One plus one over one plus one over one plus one 

Over one plus one over one plus one over one 

On and on in a dizzying twilight-zone spiral” 

 

    
1

1
1

1
1

1
1

1
1

1
...

 = +

+

+

+

+

 

 

φ 

1 

2φ -3 

333332 

11  2- φ 
5-3φ 

3333

32 11 
φ - 1 

11 

1 
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There is a simple way to prove this result. Recall, from the initial 1
1 1

x
x

=
−

equation we can obtain 

11x
x

− = or 
1

1x
x

= + . From this we recursively substitute 
1

1
x

+ for x on the right side. Thus 

1
1x

x
= + to 

1
1

1
1

x

x

= +

+

to 
1

1
1

1
1

1

x

x

= +

+

+

to 
1

1
1

1
1

1
1

1

x

x

= +

+

+

+

etc. 

If you start with 
0 1x =  and recursively compute 1

1
1n

n

x
x

+ = + the resulting sequence will approach 

1.618033989   (easily done on a handheld TI-84 graphing calculator initializing 1 → X then repeating 

1+1/X → X ).   

ϕ is constructable 

A number is constructable if a line of that length can be constructed using only straight-edge and 

compass, a construction found in Euclid’s Elements (ca 300 BCE). 

1 5

2


+
= is constructable is follows. 

Let ab  is a line of length 1  

At point a construct a line perpendicular to 

ab extending the line so that ac has length 

2. 

Therefore abc is a right triangle and bc

has length 5 by the Pythagorean 

Theorem.  

Extend line cb to point d such that 1bd =

so cd has length 1 5+ . 

Bisect cd so that 
1 5

2
ce ed

+
= =  

All of these constructions used can be done 

using only straight-edge and compass.  

 

  

c 

d 

--   e 

a b 
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Fibonacci Numbers 

In the third section of his book Liber Abaci 

written in 1202, Leonardo of Pisa (a.k.a. 

Leonardo Bonacci, a.k.a. Leonardo Bigollo 

Pisano) but better known as Fibonacci 

(1170 – 1250) posed the following problem. 

“A certain man put a pair of rabbits in a 

place surrounded on all sides by a wall. 

How many pairs of rabbits can be produced 

from that pair in a year if it is supposed 

that every month each pair begets a new 

pair which from the second month on 

becomes productive?”  

https://mathshistory.st-

andrews.ac.uk/Biographies/Fibonacci/ 

At month one there is a pair of immature 

rabbits. At month two they mature and 

breed to produce another pair of immature 

rabbits so that at month three we have 2 pair 

of rabbits.  

At month four we have 3 pair – 2 mature 

and 1 immature pair (produced by the 

previous month’s mature pair). 

By month five the two previous mature 

pairs have produced two more immature 

pairs and the immature pair matures for a 

total of 5 pairs – 3 mature (one newly) and 

2 immature pairs. 

By month six we have 8 pairs of rabbits, 5 

now mature and 3 produced by the previous 

3 mature pairs.  

A little thought suggests that the number of rabbits for the current month is the sum of the pairs from the 

previous month plus the new immature pairs from the mature pairs two month previously.   

So, if nF is the number of rabbit pairs at month n, then 1 2 1 21, 1, 2n n nF F and F F F for n− −= = = +   

This generates the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, … 

which is closely connect with ϕ (recall the powers of   equation). 

“Bewitching ratio, shadow of Fibonacci’s 

Line of jostled figures… “ 

 

A page of Fibonacci's Liber Abaci from the Biblioteca 
Nazionale di Firenze showing (in box on right) the Fibonacci 
sequence with the position in the sequence labeled in Latin 
and Roman numerals and the value in Hindu-Arabic 
numerals.- This work is in the public domain in its country 
of origin  

https://en.wikipedia.org/wiki/Fibonacci
https://en.wikipedia.org/wiki/Liber_Abaci
https://en.wikipedia.org/wiki/National_Central_Library_(Florence)
https://en.wikipedia.org/wiki/National_Central_Library_(Florence)
https://en.wikipedia.org/wiki/public_domain
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ϕ, ψ, and Fibonacci Numbers 

Binet’s formula: The Fibonacci recurrence expression 

0

1

1 2

0

1

2n n n

F

F

F F F n− −

=

=

= + 

can be express as the closed 

form expression 

( ) ( )1 5 1 5

2

5 5

n n

n n n

nF
 

+ − −

−
= = for computing the nth Fibonacci number.  

A Fibonacci Spiral 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

File:FibonacciSpiral.svg - Wikimedia Commons 



80 
 

The Golden Ratio ϕ in Art and Nature 

Much has been made about the appearances of the Golden Ratio (or Golden Rectangle) in art and nature. 

For example, the length and height of the Greek Parthenon are approximately those of ϕ to 1.   

 

                   < ---------------------------   --------------------------- > 

 

Fibonacci spirals seem to occur in storms, galaxies,  

 

 

 

 

 

shells, and flowers. 

 

 

 

 

“Spiral arms of far galaxies 

Iris of the hurricane’s eye 

Branching patterns of willow trees 

Pineapples perfect checkered quilt 

Petals of lilies, buttercups 

Mesmerizing sunflower whorl 

Twisting shells oof ponderous snails 

DNA’s molecular turn” 

 

I guess the questions is – is there really something to this? 

↑ 
| 
| 
| 
1 
| 
| 
| 
↓ 
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Phaethon’s Ride 
(e = 1/0!+1/1!+1/2!+1/3!+1/4!+1/5!+…) 

 

Secret heart of death and growth,  

exponential path of youth  

mindless of the track of day.  

No green fortitude can stay chargers freed from temperate yokes.  

 

Lost in Helios’ uncoiled oath,  

Phaethon, pulled through fiery froth,  

strains to tame the disarray,  

the secret heart.  

 

Wild upheaval, steep’ning slope  

inverts towards the valley’s throat.  

Burning chariot falls away,  

scorching trails of ash, decay,  

leaving, amid seas of smoke,  

the secret heart.  -- E R  Lutken (3: A Taos Press © 2021) 

 

Who was Phaethon? 
 

To understand the connection of Phaethon with the constant e , we need first to review the Greek story of 

Phaethon’s Ride.  

 

Phaethon was the son of the Greek god Helios who drove the chariot of the sun. When Phaethon 

approached Helios asking for assurance that he was indeed Helios’s son, Helios swore an oath to grant 

Phaethon whatever he wanted.  Phaethon asked to drive the chariot of the sun for one day which Helios 

reluctantly granted. Not surprisingly Phaethon was unable to control the chariot which first resulted in 

climbing too high thus freezing the earth then diving too low thus burning the earth. To save the earth 

from further damage Zeus struck Phaeton down with a thunderbolt.  

 

“Lost in Helios’ uncoiled oath,  

Phaethon, pulled through fiery froth,  

strains to tame the disarray,  

the secret heart.”  

 

The number e 
 

The number e , like the number  , arises naturally in mathematics although its origin is not as easily 

seen. Its value can be expressed as the sum of the infinite series …  

 

0

1 1 1 1 1 1 1 1 1 1
... ... 1 1 ... 2.71828182...

! 0! 1! 2! 3! 4! ! 2 6 24k

e
k k



=

= = + + + + + + + = + + + + +   
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e and compound interest 
 

Suppose you invested x dollars at r % interest per year. After one year you would have the original 

amount invested x plus the interest accrued r x  or ( )1x r x x r+  = + dollars. Reinvest this new amount 

to  obtain after two years ( ) ( )
2

(1 ) 1 1x r x r r x r+ + + = + . And in general, after t years, you would have 

( )1
t

x r+ dollars – thus the power of compound interest.  

 

Using PV (present value) to be the original amount invested, the future value, FV, after t years is given by 

the equation.  

 

( )1
t

FV PV r= +  

 

Now let’s modify the problem somewhat.   

 

Instead of compounding annually, let’s compound k times per year. This changes the formula to 

1

k t
r

FV PV
k



 
= + 

 
 

Note that we divide the interest rate by k but increase the compounding by a factor of k. 

 

Now consider the case where we start out with PV = $1.00 and the rate r is 100% interest. It’s intuitively 

obvious that after one year (k = 1) that the future value FV would be $2. However, if we compound 

quarterly, we get interest after three months which is included in computing the interest for the next three 

months and so on … so that at the end of the year 

4
1

1 $2.44
4

 
+ = 

 
. If we compound monthly, we 

would get 

12
1

1 $2.61
12

 
+ = 

 
, compounding daily using 365,  

365
1

1 $2.71
365

 
+ = 

 
and so on. Now as 

the number of compounding periods, k,  increases without bound (compounding continuously?) we 

approach a limit: 
1

lim 1 2.718281828

k

k
e

k→

 
+ = = 

 
. 

 

Exponential Growth and Decay 
 

“Secret heart of death and growth,  

exponential path of youth  

mindless of the track of day.  

No green fortitude can stay chargers freed from temperate yokes.”  

 

Equations of the form xy a b=  where 0a  , 0 1b and b  are the equations of exponential growth (for 

b > 1) and exponential decay ( 0 < b < 1). Exponential because the independent variable x is the exponent. 

The positive constant b is called the base. 

 

Exponential growth equations govern phenomena like compound interest (e.g. ( )1
t

FV PV r= + ) and 

population growth. Exponential decay equations govern phenomena like radioactive decay often 
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expressed in terms of the half-life of a radioactive element. For example, the remaining amount (quantity) 

Q of a radioactive element is given by the equation 

/

0

1

2

t h

Q Q
 

=  
 

where 0Q is the original amount and h 

is the half-life.  

The origins of ex 
 

In calculus, the exponential function xy e= where e is the base has some very unique properties, the 

foremost of which is that it is its own derivative; that is x xd
e e

dx
=  In fact all of its derivatives are the 

same making xy e=  a very unique function. Because this is so, its Taylor Series expansion, obtained from 

its derivatives yields the infinite series expansion …  

 
2 3 4 5

0

1 ... ...
! 2! 3! 4! 5! !

k k
x

k

x x x x x x
e x

k k



=

= = + + + + + + + +  

 

And of course, setting x = 1 yields the value for e as the limit of an infinite series 

 

0

1 1 1 1 1 1 1 1 1 1
... ... 1 1 ... 2.71828182...

! 0! 1! 2! 3! 4! ! 2 6 24k

e
k k



=

= = + + + + + + + = + + + + +   

 

To put this in a wider context, while  is the ratio of the circumference of a circle to its diameter, e  is the 

base of the exponential function xy e= all of whose derivatives are the same. As it turns out, this is 

mathematically very useful! 

 

Exponential Growth 
 

“Wild upheaval, steep’ning slope”  

 

Exponential growth functions climb very fast outracing, outpacing other common-place functions like 

polynomials. Indeed, the larger the x the faster xy e= increases – faster and faster.  

 

Exponential Decay 
 

“inverts towards the valley’s throat.” 

 

But exponential growth can be turned around if we allow xe to be in the denominator; that is as an 

exponential decay function like 
1x

x
y e

e

−= = . Just as xe increases faster and faster as x increases, the 

exponential decay function
1x

x
e

e

− = decreases faster and faster as x  increases, but (and this is important), 

it never equals zero and never crosses the x-axis (never hitting the ground unless struck by a lightning 

bolt).  

“Burning chariot falls away,  

scorching trails of ash, decay,  

leaving, amid seas of smoke,  

the secret heart.” 
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xy e= and its inverse ln( )y x=  

 

As mentioned in Measured Illusion, the exponential function 
xy e= and the natural logarithmic function 

ln( )y x= are inverse functions. Since 
xy e= is a one-to-one function (i.e. each x value is mapped to a 

unique y value) it has an inverse ( )lny x= . 

 

Formally we define ( )lny x= if and only if  
yx e= (note the reversal of roles for x and y).  Since they are 

inverse functions, the one undoes the other: 
( )ln x

x e= and ( )ln xx e=  

 

The derivative of ( )lny x= is interesting: ( )
1

ln
d

x
dx x

= . Therefore, the integral ( )
1

1
ln

n

dx n
x

=  since 

integration is the inverse of differentiation. Recall in Measured Illusion, we introduced the logarithm ln(n) 

as the area under the curve 1y
x

= on the interval between 1 and n.  

 

And while the exponential growth function 
xy e= increases faster than any power of x (e.g. 

ny x= for n 

> 1) as x increases, its inverse function ln( )y x=  increases very slowly exhibiting what is called 

logarithmic growth. For example, ln( )y x=  increases slower than the linear function y mx b= +  root 

functions like y x= or ny x= for n = 2,3,4,…  
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π 
 
Trapped on planes, 

circles and lines find each other, 

centered, locking arms. 

 

 

 

 

 

 

 

The faithful connection 

always, always the same 

for each and every pair. 

 

 

 

 

 

 

 

 

Ruled by an irrational constant, 

its measure, a sequence 

never repeating.  -- E R Lutken (3: A Taos Press © 2021) 

 

circumfere

e

n

di

ce

amet r
 =      
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       72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 

       78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 

       33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 

       07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 

       98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 

       60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 

       00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 

       14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 

       42019 95611 21290 21960 86403 44181 59813 62977 47713 09960 

       51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 

       50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 

       71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 

       59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 

       18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 
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A short history of π 
 

The origins of π lie in early attempts to construct a square with the same area as a given circle, referred to 

as squaring the circle. This was one of the three famous classical problems of Greek mathematics, the 

other two being trisecting an angle and doubling the volume of a cube. But the problem goes way back 

before the Greeks of the 4th century BCE.  

 

In his book Journey Through Genius – Great Theorems of Mathematics, William Dunham outlines four 

phases in the determination of π. 

1 - Early Approximations 
 

Well before the 4th century BCE Greeks, several ancient cultures came up with a number of pre-scientific 

approximations to π, probably caused by attempts (?) to determine the area of a circle by constructing a 

square with the same area (squaring the circle). Proposition XII.2 of Euclid’s Elements (ca. 300 BCE) 

states “Circles are to one another as the squares on their diameters” so even if the ratio of the 

circumference to the diameter of a circle (i.e. the definition of π) was not known, they understood this 

particular relationship between the diameter of a circle and its area.  

 

The ancient Babylonians used (?) the value of 3 for the ratio of the circumference to the diameter for a 

circle though there is some evidence that they might have used 
1

3 3.125
8
 3 instead. Writing about the 

“sea”, a large circular basin for holding water, I Kings 7:23 from the Bible states “Then he made the 

molten sea, ten cubits from brim to brim, while a line of 30 cubits measured it around” which yields a 

value for 3.0 for π. There was some thought that this value originated with the Babylonians. 

 

A more accurate approximation can be obtained from Problem 50 from the Egyptian Rhine papyrus (c.a. 

1650 BCE – on the right) which states that a 

round field of diameter 9 khet (radius 9/2) has 

an area of 64 setat (square khet?). Given that 

2

circleArea r= using 
9

2
radius =  and a little 

algebra shows that   
2

9
64

2

 

= 
 

  

and so  
2

16 265
3.1604938

9 81


 
= = 

 
 

 

So using the diameter of a circle  
2

8

9
circlearea diameter

 
=  
 
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An interesting conjecture suggests a possible way of understanding where this calculation came from. 

From the figure on the left, the area of the blue circle and the area of the red square look very much the 

same. So how best to adjust the radius of the circle r and the width of the square a so that two areas are 

equal? 

 

 

 

 

 

                               
2

a
 

 
 

    

 

 

 

 

 

 

 

A simple way is to expand the red square by a factor of 
9

8
as was done on the right (black square) to 

match the diameter of the circle. The 9 by 9 grid overlay in the upper right quadrant seems to confirm that 

this ratio “works”; the area of a circle is approximately the same as the area of a square whose side is 
8

9
times the diameter of the circle. Thus 

2
8

9
circlearea diameter

 
=  
 

 

 

 

See: Engles, H; Quadrature of the Circle in Ancient Egypt; Historia Mathematica; Vol 4;1977;137-140 

 

2 - Archimedean Methods 
 

Archimedes (287-212 BCE) made two very important contributions to the history of the determination of 

π. First, he proved that area of a circle is one half the radius times the circumference; that is … 

1

2
circleArea r C=   

Since 2C r= this agrees with the modern formula for the area of a circle: 2

circleArea r= .  

 

Second, he computed the ratio of the circumference to the diameter, that is π, to be greater than 
10

3
71

and 

less than 
1

3
7

. That is  

10 1
3.140845 3 3 3.142857

71 7
     

r 
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To obtain the area, a circle can be bracketed by areas of 

inscribed and circumscribed regular polygons. If we 

unroll the triangles, we see that the area of a polygon is 

one-half the altitude of a triangle times the perimeter.   

 
As the number of sides increase, the two polygons 

squeeze down on the circle. In the limit the two polygon 

areas converge to equal the area of the circle. It was a 

very clever proof – an example of what I call “proto-

integration”. However, the use of calculus by which this 

is easily done today (and which in some sense 

Archimedes’ method prefigures) lay 2000 years in 

Archimedes’ future. 

 

The same diagram was also used to obtain the ratio of the circumference to the diameter of a circle. In the 

3rd proposition from Measurement of a Circle Archimedes states “The ratio of the circumference of any 

circle to its diameter” (what we call  ) “is less than 
1

3
7

but greater than 
10

3
71

”  

Starting with a circle of radius one (and diameter two), an inscribed hexagon has perimeter six which is 

obviously less than the circumference of the circle so 3  . A simple bit of geometry can show that if  s 

is the length of the side for an n-sided polygon with radius one, then 22 4t s= − −  is the length of the 

side of a 2n-sided polygon. So, for a hexagon with side 1s = , t = 0.5176380902 for a 12-sided polygon 

resulting in 3.10582541   . Archimedes repeated this calculation for 24, 48 and finally a 96 sided 

polygon to get a lower bound of 
10

3.140845 3
17

 .  

 

A similar approach starting with a circumscribed hexagon and doubling the sides through 12, 24, 48 and 

96 (requiring a different formula for finding the length of one side of a circumscribed 2n-gon given the 

length of a side of a circumscribed n-gon) yielded an upper bound of 
1

3.142857 3
7

  Thus  

10 1
3.1408454 3 3 3.142857

71 7
circleArea     

 

Thus, we have a mathematically rigorous method for calculating π – subject only to the difficulty of the 

calculational effort required. Indeed, the record for determining the digits of π using this method goes to 

Ludolph Van Ceulen (1540 – 1610) who computed π to 35 digits.  

 

3 – Arctangent Series and the Calculus 
 

By the 16th and 17th centuries advances in mathematics yielded a number of equations for determining  . 

Probably the most famous is the Gregory (1638-1675)-Leibniz (1646-1716)–Nilakantha (c.a. 1450 – c.a.  

1550) formula 

( )

0

11 1 1 1 1
1 ...

4 3 5 7 9 11 2 1

k

k k

 

=

−
= − + − + − =

+
  
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A derivation of this formula is a very straightforward evaluation of the arctangent integral using the fact 

that 
2

1

1 t+
can be rewritten as an alternating series which can be easily integrated term by term.  

( )
( )3 5 7

2 4 6 2 1

2
00 0

11
arctan 1 ... ...

1 3 5 7 2 1

kx x

k

k

x x x
x dt t t t dt x x

t k


+

=

−
= = − + − + = − + − + =

+ +
   

Note that arctan(x) is an alternating series of x raised to odd powers. Since ( )arctan 1
4


= , evaluating the 

series for x = 1 give you 
4


. Unfortunately, the Gregory-Leibniz- Nilakantha series for 

4


when x =1 

converges very slowly.  

 

However, John Machin’s 1706 arctangent-based formula seen below uses smaller values for x.  

 
1 1

4arctan arctan
4 5 239

    
= −   

   
 

With the smaller values of x (
1

5
 and

1

239
), the two infinite series used for the arctangents converge 

faster. For example,  for 
1

5
x =  

   

1 5

2

0

1 1
arctan

5 1
dt

t

 
= 

+ 
  

1 5

2 4 6

0

1 ...t t t dt= − + − + an 

3 5 7
1 1 1

1 5 5 5
...

5 3 5 7

     
     
     

= − + − +  

( )

( )3 5 7 2 1
0

11 1 1 1
...

5 3 5 5 5 7 5 2 1 5

k

k
k k



+
=

−
= − + − + =

   + 
  

The increasingly large, odd powers of 5 in the denominator of each term causes the series for 
1

arctan
5

 
 
 

to converge faster compared to the series for ( )arctan 1 . This is also true (more so) for the terms of the 

series for 
1

arctan
239

 
 
 

. The genius behind Machin’s 1706 equation (and others to follow) was coming 

up with an alternate expression for 
4


using faster converging arctangent series. 

 

Newton’s Approximation to π (written 1671? – pub. 1737) 

 

Using the newly discovered (invented?) calculus and his generalized Binomial Theorem, Newton easily 

(?) determined π to 16 decimals (3.1415926535897928) as follows.  
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Starting with the curve ( )
1 1

2 2 21y x x x x= − =  −

which is the equation of a half circle of radius 
1

2
 

centered at 
1

0,
2

 
 
 

, Newton was able to compute the 

area of the sector ADC which being 
1

6
th of the area of 

a circle of radius 
1

2
 equaled 

2
1 1

6 2 24



 

 = 
 

. This 

sector whose area was 
24


could be partitioned into the 

right triangle BCD and the area under the circular 

curve on  the interval 
1

0,
4

 
 
 

 

Since angle BCD is 60 , BD is length 
3

2
making the area of the triangle BCD 

3

4
. Using calculus, the 

area under the curve AD from 0 to ¼ is given by the integral ( )
1 4

1 1
2 2

0

1x x dx− .  

Thus ( )

1
4

1 1
2 2

0

3
1

24 4
x x dx


= + −  

 

 

Now, using his Generalized Binomial Theorem, the integrand can be rewritten as an infinite series … 

 

( )
1 1

2 2

1
2 3 4 52

3 5 7 91 11
2 2 2 2 2 2

1

1 1 1 5 7
1 ...

2 8 16 128 256

1 1 1 5 7

2 8 16 128 256

y x x

x x x x x x

x x x x x x

= −

 
= − − − − − − 

 

= − − − − − −

 

 

which can be expanded to any degree of accuracy and integrated term by term. This value plus the value 

of the triangle 
3

4
equals 

24


which can be solved for  .  

  

Newton wrote “I am ashamed to tell you to how many figures I carried these calculations, having no 

other business at the time”. 

 

Further hand calculations of π 
 

The origin of the symbol for pi, π, first appeared in a 1706 work by Willian Jones (1675 – 1749). The use 

of the symbol π was further popularized by Leonard Euler (1707 – 1783).  

 

1    1/2 
+ 

0 1/4 
+ 

D 

B 

C 

A 
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John Machin in 1706 using his arctangent-based formula 
1 1

4arctan arctan
4 5 239

    
= −   

   
 determined π to 

100 digits.  

 

In 1767 Johann Heinrich Lambert (1728 – 1777) proved that π is irrational; that is π could not expressed 

as the quotient of two integers.  

 

William Shanks in 1853 determined π to 605 digits then in 1874 determined π to 707 digits. 

 

In 1882 Ferdinand Lindemann (1852 – 1939) proved that π was transcendental! As mentioned in 

Meditation on Transcendental Numbers, that π was proved to be transcendental resulted in showing that 

the circle could not be squared. 

 

In A Budget of Paradoxes Vol. II (published posthumously in 1873) Augustus De Morgan (1806 – 1871) 

observed that the number of 7’s in Shanks’s 1853 determination of π did not occur as often as the other 

digits. It was later discovered that there were errors in Shanks’s determination beginning at the 527th digit 

which D. F. Ferguson in corrected 1947 determining π to 710 digits thus correcting Shanks’s error. 

 

In September 1947 D. F. Ferguson and John Wrench determined π to 808 digits using a desk calculator 

and a different arctangent formula    

1 1 1
8arctan arctan 4arctan

4 10 239 515


= − −  

 

In 1949 Levi Smith and John Wrench determined π to 1,120 digits using desk calculators.  

 

Augustus DeMorgan’s observation of the relative scarcity of 7’s in Shanks’s erroneous 1853 

determination of π led to the question as to whether the digits in π occur equally often; that is, in the long 

run do the number of 0’s, 1’s 2’s etc. occur, in an asymptotic sense, equally often? Thus, is π normal – 

meaning are the digits uniformly distributed? The answer is not known and there seems to be no way of 

proving or disproving this assertion although the counts of digits obtained from larger and larger 

determinations of π seem to support the assertion that π is normal.  

 

4 - Enter the Computer - The 1949 ENIAC Determination of π 
 

In 1949, at the suggestion of John von Neumann, a team headed by George Reitwiesner at the U.S. 

Army’s Ballistic Research Lab in Aberdeen MD programmed the ENIAC (Electronic Numerical 

Integrator and Computer) to determine π to 2037 digits – the first use of a computer to determine the 

digits of π. The reason given was “to determine π … with a view toward obtaining a statistical measure of 

the randomness of distribution of the digits” perhaps recalling DeMorgan’s discovery of the fewer 

number of occurrences of the digit 7 in Shanks’ erroneous determinations.  

 

The ENIAC was not designed to perform such high precision calculations as the ENIAC only had 200 

digits of decimal storage. Yet it was cleverly programmed to implement Machin’s formula to perform a 

calculation that required more than 2000 digits of precision. It took 70 hours to perform the calculation 

mostly because intermediate results had to be punched out on IBM punch cards then later read back in. 

The calculation took place over the Labor Day weekend of 1949. 
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Aside: I became interested in exactly how the 

ENIAC with its peculiar instruction set and a 

store of 200 decimal digits could perform a 

calculation that required more than 2000 

digits of precision. Researching how it could 

be done resulted in a publication: “The 

ENIAC’s 1949 Determination of π”; IEEE 

Annals of the History of Computing ; Vol. 

34, No. 3 (July – Sept. 2012). Hence my 

(vanity) license plate. The techniques were 

later used to write a Python program to 

determine digits of π to 10,000 digits of 

precisions – the first 1000 of which are 

displayed on page 85 with the poem. 

The ENIAC record for the determination of π held for 5 years. It was eventually surpassed in 1954 by the 

Navy’s NORC (Naval Ordinance Research Calculator) computer’s 13-minute computation of π to 3089 

digits.  In 1961 Daniel Shanks and John W. Wrench Jr. used an IBM 7090 computer to determine π to 

100,00 digits in an 8-hour 43-minute run using the Machin-type arctangent formula 

 

1 1 1
24arctan 8arctan 4arctan

8 37 239
 = + +  

 

But the Machin-type arctangent-based formulas used are no longer enough. 

 

5 - And beyond …? 
 

A new class of recursive algorithms was now needed and used to determine the digits of π out to millions 

and billions of digits. Even with faster and more powerful computers, the older Machin arctangent-based 

methods were computationally too slow; doubling the number digits upped the computational time by 

factor of 4 – it was a losing battle. If in 1961 100,000 digits required a little over 8.7 hours, 800,000 

digits, well short of a million, would require more than 556.8 hours or 23.2 days.  A rough estimate 

indicates over 8 years would be needed to achieve a goal of 1 billion digits.  Of course, 21st century 

computers are a lot faster and more powerful than the 1960’s IBM 7090 but it is still a losing battle.  

 

And then there is Ramanujan and his formulas for π – see 1729 

 

The current record for the digits of π (as of March 2019) is 31 trillion digits. 

 

But this raises the question – why the interest in determining more and more digits of π? 

 

Trivia Question: What is the millionth digit of π (after the decimal point) ? Answer: 1 

 

 

 

 

 

 

My License Plate – Combining Computers & Mathematics 
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The Basel Problem 

Finally, a surprising result about  ! In 734 Leonard Euler proved 
2

2
1

1 1 1 1
1 ...

4 9 16 6k k



=

= + + + + =  

a remarkable connection between the sum of the reciprocals of squared integers and   

 

Determining the sum of the reciprocals of the squares 
2

1

1 1 1 1
1 ...

4 9 16k k



=

= + + + + was a difficult 

problem. However, as it turned out, it had a very surprising solution! It was proposed by Jacob Bernoulli 

(1654 – 1705) who lived in Basel (hence the name the Basel Problem) and who was able to prove it 

converged to a value less than 2 but was unable to find an exact solution. Jacob’s younger brother and 

mathematical rival Johann Bernoulli (1667  - 1748) was also unable to solve it as was Gottfried Wilhelm 

Leibniz! It was Leonard Euler (1707 – 1784) a student of Johann Bernoulli who in 1734 found the 

solution in one of the most beautiful and astonishing proofs in mathematics.  The result is … 

 
2

2
1

1 1 1 1 1

6
1 ...

4 9 16 25k k



=

= + + + + + =  

 

Note that the sum of the reciprocals of the squared integers sums to a value containing the constant π, the 

circumference of a circle divided by its diameter (see  ). 

 

 

Finally: Monte Carlo Pi - Another Way to Calculate π - See The Truel   
 

When π = 4? 
 

In the July 1894 issue of the newly established American Mathematical Monthly, under the Queries and 

Information section, there appeared an article titled 

 

“Quadrature of the Circle” 

by Edward J. Goodwin, Solitude, Indiana 

 

which was 

“Published by the request of the author”. 

 

The opening paragraph of the article read 

 

“A circular area is equal to the square on a line equal to the quadrant of the 

circumference; and the area of a square is equal to the area of the circle whose 

circumference is equal to the perimeter of the square.” 

 

This was followed by the statement  

 

“(Copyrighted by the author 1889. All right reserved)” 

 

The article went on at some length about this new determination for finding the area of a circle but just 

going by the opening line, if the area of a circle is equal to the area of a square with sides equal to 
4

C
 , 
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then 

2

4
circle

C
Area

 
=  
 

 as opposed to 2

circleArea r= . Since by definition 
2

C C

D r
 = =  or 2C r= it 

follows that 

2 2 2 2
2 2

4 4 4
circle

C r r
Area r

 


   
= = = =   

   
.  Therefore 

2 2
2

4

r
r


 =  

2 2 24
0

4

r r −
=  

2 2 24 0r r − =  

( )2 4 0r  − =   

4 =  

 

In the defense of the American Mathematical Monthly, at that time the Monthly was privately published 

and apparently had a policy to publish articles at the request of the author (see above). In any case the 

issue might have ended there, except Dr. Goodwin (a physician) from Solitude in Posey County Indiana 

prevailed upon his local representative to the Indiana House, Taylor I. Record, to submit House Bill No. 

246 in January 1897 that began 

 

“A bill for an act introducing a new mathematical truth and offered as a contribution to 

education to be used only in the state of Indiana free of cost by paying any royalties 

whatsoever on the same, provided it is accepted and adopted by official action in the 

legislature of 1897 … 

 

… Be it enacted by the General Assembly of the state of Indiana. That it has been found 

that a circular area is to the square on a line equal to the quadrant of the circumference as 

the area of an equilateral rectangle is to the square on one side”. ”      

 

The passage of House Bill No. 246 through the Indiana Legislature makes for interesting and humorous  

reading. In defense of the Indiana legislators, from accounts I read, I got the impression that they knew 

the bill was bogus but had some fun playing around with it.  

 

From the Indianapolis News, February 13, 1897, p. 11, col 3. 

 

“Representative Record’s mathematical bill legalizing a formula for squaring the circle 

was brought up and made fun of. The senators made bad puns about it, ridiculed it and 

laughed over it. The fun lasted half an hour. Senator Hubbell said that it was not meet for 

the Senate, which was costing the state $250 a day, to waste time in such frivolity. He said 

that in reading the leading newspapers of Chicago and the East, he found that the Indiana 

State Legislature had laid itself open to ridicule by the action already taken on the bill, He 

thought consideration of such a proposition was not dignified or worthy of the Senate. He 

moved the indefinite postponement of the bill, and the motion carried”.   

 

It is interesting that Goodwin copyrighted his determination of the area of a circle as equal to “the square 

on a line equal to the quadrant of the circumference” and that he was willing to allow the state of Indiana 

to use his determination free of payment of royalties.  
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- 2 

 

Grieved serfs’ servitude for measured grain,  

battling armies pushed back, homelands lost,  

bankers’ algorithms of debits/gains,  

human number lines veer left towards cost.  

My mind rambles up the lane to the faded old  

apartment, the frail gray pair of them smiling,  

inviting me for tea, in from the cold,  

to listen to stories, play silly games and sing.  

The sum of them and their unabashed love  

an absolute value more than they themselves.  

At notice of their deaths, I shirked the move  

through negative numbers, mumbled a farewell.  

Years on, remembrances that I brushed off  

in forfeiture still extract gold tears of loss.  

     -- E R Lutken (3: A Taos Press © 2021) 

 

Baucis and Philemon 

 
The Roman writer Ovid’s (43 BCE – 17 or 18 CE) collection of Greek/Roman fables relates the story of 

Baucis and Philemon, an older couple who welcomed a disguised Zeus and Hermes to their humble 

cottage after the two travelers had been turned away by others in the area. Exacting punishment on those  

who refused hospitality to strangers (a breach of social standards), Zeus and Hermes destroyed the area 

but spared Baucis and Philemon turning their humble cottage into an ornate temple. The older couples’ 

wish to be guardians of the temple was granted along with their wish that when one of them died, the 

other would at the same time; thus, they were joined together in death as two trees, an oak and a linden.    

 

102 = 2: Base 2 Binary Numbers 
 

One of the advantages of our modern positional notation for representing numbers is that numbers using a 

different base can be easily represented.  

 

In binary or base-2 notation, the weight of each binary digit a.k.a. bit (either 0 or 1) from right to left is a 

power of 2 instead of a power of 10 as in our commonly used decimal positional notation. So 

 
5 4 3 2 1 0101101 1 2 0 2 1 2 1 2 0 2 1 2 32 8 4 1 45=  +  +  +  +  +  = + + + =  

 

The powers of 2 are easy to compute: 1, 2, 4, 8, 16, 32, 64, 128, … etc. just double the previous value 

which makes converting from binary to decimal fairly easy to do by summing the corresponding power of 

2 indicated by the 1’s digits as done above. 

 

0 -2 2 
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Converting decimal to binary is a bit more trickly but can be done by using the following tableau to 

subtract (and record) the corresponding powers of 2. 

 

Example: Convert 45 (decimal) to binary using the following tableau form 

     
0       

64  32 16  8  4  2  1 

  45          

 

That is, write out the power of 2 right to left in the second row until you exceed the value being converted 

(64 > 45). Put a 0 in the row above (indicating there are no 64’s in 45).  

 
0 1 0 1 1 0 1 

64  32 16  8  4 2  1 

  45 

-32 

--- 

 13 

  13 

 -8 

--- 

  5 

  5 

 -4 

--- 

  1 

   1 

 -1 

--- 

  0 

 

Next subtract the next smallest power of 2 from the number being converted, placing a 1 in the row above 

that power of 2. Continue working left to right subtracting the corresponding power of 2 from the 

remaining difference and putting a 1 in the row above the corresponding power of 2 if subtraction is 

possible or putting a 0 in the row above the corresponding power of 2 if subtraction is not possible. 

Continue down to 1 = 20 at which point the first row will have the corresponding binary representation 

(leading 0’s are quite ok).  

 

Aside: The above conversion algorithms work best with paper and pencil; there are other algorithms 

which are easy to program.  

 

Advantages and Disadvantages of Binary Numbers 
 

There are two advantages to binary numbers. First, 2-state electronic components are cheap and easy to 

produce (vs ten-state electronic components) which is why computers use binary notation internally. 

Second and perhaps more importantly, algebraic operations like addition, subtraction, multiplication, 

division, and yes even square roots, are easier to do in binary than in decimal – a fact that carries over to 

designing the corresponding electronic circuits (see Math History in a Few Bad Clerihews).  

 

The big disadvantage is that you need a lot of binary digits (bits) to represent even medium sized 

numbers. An n digit decimal integer requires on the order of 3.3n bits. For example, 10-digit decimal 

number requires approximately 33-36 bits. 999 decimal (3 digits) is 11111 00111 binary (10 bits).  
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Doing Arithmetic in Binary 
 

The rules for binary addition and binary subtraction are presented below with and without a carry in from 

the right (addition) and with and without a borrow from the right (with subtraction). Four of the eight 

addition rules have a carry out to the left and four of the eight subtraction rules have a borrow from the 

left. Four of the eight addition rules have a carry in from the right and four of the eight subtraction rules 

have a borrow from the right.  

 

Addition Rules (with and without a carry out to the left indicated by 1 and with and without a carry in 

from the right indicated by +1)  

   
             +1   +1    +1   +1  <- carry in 

  0  1  0  1   0  1  0  1    

 +0 +0 +1 +1  +0 +0 +1 +1 

   --  -- -- --  -- -- -- -- 

   0    1  1 10   1 10 10 11 

 

Subtraction Rules (with and without a borrow from the left denoted by  -1 and with and without a 

borrow from the right indicated by -1).  

 
                                  -1     -1     -1     -1  <- borrow 

   0      1      0      1        0      1      0      1  

  -0     -0     -1     -1       -0  -0     -1     -1  

  --     --     --     --       --  --     --     -- 

   0      1   -1 1      0     -1 1   0   -1 0   -1 1 

 

The rules for subtraction can be somewhat confusing when compared to the addition rules. For example, 

the third rule subtracting 1 from 0 requires borrowing 2 units from the left. Subtracting 1 from the 2 

borrowed units leaves a difference of 1 with the indicated borrow from the left (-1). 

 

The seventh rule subtracting 1 from 0 with a borrow from the right (-1) requires borrowing 2 units from 

the left to cover both the 1 being subtracted and the 1 borrowed from the right. Hence the difference is 0 

and the borrow is propagated to the left (-1). 

 

Multiplication Rules: The rules for multiplication are simpler; if the 

single digit multiplier is 1, you simply copy the multiplicand; 

otherwise with a 0 multiplier the product is zero.   
 

  

 

 

Computing partial products for multi-digit multiplicands and multipliers (see example 

on the left) is greatly simplified: If the multiplier digit is 1, the partial product is just 

the multiplicand (appropriately left shifted). If the multiplier digit is 0, the partial 

product is all zeros (appropriately left shifted). The complexity for multi-digit binary 

multiplication is in summing the partial products. Recall that multiplication is 

repeated addition, 

 

 

 

 0  1  0  1 

×0 ×0 ×1 ×1 

-- -- -- -- 

 0  0  0  1 

    1101 

  × 101 
------- 

   1101 

  0000 

 1101 

------- 

1000001 

 

 



98 
 

Division Rules: You can’t divide by 0 and anything divided by 1 is anything. However long division 

where you have a multi-digit dividend and, a multi-digit divisor is a different story! 

 
In the long division example on the left we’re dividing 65 = 10000012 

by 6 =  1102 using the standard paper and pencil long division 

approach. 

 

1102 goes into 10002  the partial dividend 1 time (1 is the first quotient 

digit) so subtracting we have 102 left over.  

 

Bringing down the next zero (denoted by ↓), 1002 is smaller than 1102 

so 0 is the next quotient digit. 

 

Bringing down the next zero is 10002 . We can subtract 1102 .  1102 

goes into 10002 1 times (1 is next quotient digit) with 102 left over.  

 

Bringing down the final 1, 1012 is still too small so 0 in the final 

quotient digit and we have 1012 as a remainder. One advantage to long division in binary is that the 

quotient digit is either 0 or 1 depending on whether the divisor is less than or greater than or equal to the 

partial dividend. A simple comparison is all that is needed unlike decimal long division where you 

guestimate how many times the divisor goes into the partial dividend (and then multiply and subtract to 

get the next partial dividend). Note 65 6 10 5rem =  

 

Observe that the complexity for binary long division is due to repeated subtraction! 
   

Computers and Binary Representation 

 
As mentioned above computers represent numbers internally in binary since bi-stable electronic  

components are cheap and circuits to do arithmetic operations like addition, subtraction etc. in binary are 

less complicated.  

 

Computers store binary integers using a fixed number of bits. A byte is 8-bits; 4 bytes = 32 bits is a word, 

and 8 bytes = 64 bits is a double word. Obviously, the more bits used to store an integer the greater the 

range of integers that can be represented. Today the default standard seems to be 64-bit integers (double 

words!). 

 

Restricting the size of integers to 8 bits (binary digits) gives us a range from 0000 0000 equaling 0 (the 

smallest representable integer) to 1111 1111 equaling 255 (the largest positive integer).  
 
0000 0000 | 0000 0001 | 0000 0010|  . . .  |1111 1101 | 1111 1110 | 1111 1111 

    0           1           2                  253         254         255 

 

Representing Negative Binary Numbers   

n-bit Twos Complement Binary Notation 

 
What about negative binary integers?  How does one represent -2? 

 

A standard approach for representing signed binary integers where the number of bits is fixed is to use the 

left most or most significant bit as the sign bit using 0 for plus and 1 for minus. 

         1010 r 101      

     ----------  

110 / 1000001 

     - 110 

      ---- 

        10↓  

        100↓  
        1000 

       - 110 

        ---- 

          10↓ 
          101  
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With the sign-magnitude technique the left-most bit is simply the sign – so 0000 1101 is plus 13 while 

1000 1101 is minus 13. 8-bits gives a range of -127 to +127. Unfortunately, with this method there are 

two zeros: 0000 0000 or +zero and 1000 0000 or minus zero.   

Aside: Mathematically speaking zero is neither positive nor negative. 

 A better method and the one used today is called n-bit twos complement notation where the sign bit (the 

left-most bit) is given a negative value or weight. In the case of 8-bit two complement notation the weight 

of the sign bit is -27 = -128 leaving the rest of the bits to keep their positive weights. 

 

 

For example:  

 

 

 

And of course, 0000 0010 = +2 (leading zeros!) 

 

With 8-bit twos complement notation, the range is -128 … +127 
 

1000 0000 | 1000 0001 | 1000 0010 | ... | 1111 1101 | 1111 1110 | 1111 1111 

  -128        -127        -126               -3          -2          -1  

 

0000 0000 | 0000 0001 | 0000 0010 | ... | 0111 1101 | 0111 1110 | 0111 1111   

    0           1           2                125         126         127         

 

One interesting side effect of n-bit twos complement representation is that zero is a positive number since 

its sign bit is 0 (positive). As mentioned above, this is an interesting difference between mathematics and 

computer science since mathematically, zero is neither positive nor negative.  

 

Aside: The hardware of a computer can detect the sign of a number by simply examining the most 

significand bit; a very simple circuit to implement.  

 

Doing Arithmetic in n-bit Twos Complement Binary Representation 
 

Addition: The standard eight rules for binary addition hold for n-bit twos complement binary 

representation. 

 

Negating: Negating an n-bit two complement binary integer is easy: to negate, you bitwise complement 

each bit then add 1.  

 

Example: To negate +45 = 00101101 

 
  00101101 

  11010010 ← bitwise complement 

 +       1    plus 1  

      -------- 

      11010011 = -128 + 64 + 16 + 2 + 1 = -128 + 83 = -45 

 

 

 

 

1111 1110 =  

-1×27 + 1×26 + 1×25 +1×24 + 1×23 + 1×22 + 1×27 + 0×20 =  

-128 + 64 +32 + 16 + 8 +4 + 2 = -2   
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And if we negate -45 (bitwise complement and add 1) … 
 

  11010011  

  00101100 ← bitwise complement  

 +       1   plus 1 

  -------- 

  00101101 = +45        

 

And we’re back! 

 

Subtraction: Subtraction is now done by negating the subtrahend (easily done by complement and add 

+1) and adding it to the minuend with any carry out from left-most position thrown away.  For example, 

 
 45    00101101                   00101101 

-22   -00010110      00010110    +11101010 

 --    --------      11101001     --------      

                    +       1  00010111 = 23 

                     --------  

                11101010 = -23 

    

 22   00010110                    00010110   

-45  -00101101      00101101     +11010011 

 --   --------      11010010      --------  

                   +       1      11101001 = -128+64+32+8+1 = -23    

                    -------- 

                    11010011 = -45 

 

Thus, there is no need for a separate subtraction circuit or separate subtraction rules. Furthermore, by 

hand addition is easier to do than subtraction (recall the 8 subtraction rules given above). Of course, 

negative results are now possible if the subtrahend is larger than the minuend.   
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Carpenter’s Song 
 

On the job, like a good greasy  

ham and cheese sandwich, 

not some lettuce bowl that needs a fork 

twelve is the best number. 

 

Rulers, yardsticks, squares are decimal sizes, 

and twelve divides into halves, fourths, 

into thirds, sixths and, of course twelfths. 

Can’t beat it for building 

twelve is the best number. 

 

Centimeters may be fine for measuring 

the length of a pill, or calculating a trip 

to Mars, where all those conversions can 

skip through your head in a stream of zeros, 

but for work you lift with your hands,  

pull out a tape and mark with a fat pencil, 

twelve is the best number. 

-- E R Lutken (3: A Taos Press © 2021) 

 

Why 12? 
 

Base ten we get (?) from our fingers and thumbs – so decimal notation is in some ways understandable. 

Of course, the ancient Babylonians used base 60 (sexagesimal) vestiges of which have come down to us 

today as 60 seconds in a minute, 60 minutes in an hour, and 360 degrees in a full circle. And it is true that 

60 (like 12) is highly divisible - by 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30, but unlike our modern decimal 

positional notation (inherited from India) with ten symbols 0 thru 9 to represent digits, the Babylonians 

repeated symbols for ten and one to represent values between 1 and 59.  

 

There is an interesting theory that the high divisibility of 60 was not the reason base 60 was used. The 12 

finger phalanges – the three joints of the four fingers (phalanges) when touched by the opposing thumb 

could be used to count. When a full count of 12 was reached, a finger on the other hand could be extended 

to mark a group of 12 and the other hand reset. A full count of four extended fingers (4 × 12) on one hand 

plus 12 phalanges on the other yielded 60. In fact, one could actually do addition by counting on one’s 

fingers.  

 

Though twelve might be the best number, we don’t have a base 12 number system – to do so would 

require adding two new digits – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, T (for ten), E, (eleven) or maybe taking a hint 

from hexadecimal (base 16) notation 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B.  

 

So, which is the best number base? 

 

Base 2, 23=8, 24=16? 
 

Modern computers use binary notation – base 2 with the digits 0 and 1 (see entry for -2). This was done 

for two reasons. First, bi-stable electronic circuits are cheap and easy to fabricate and second, arithmetic 

operations done in binary are less complicated to do. For example, consider the size of a ten by ten 

decimal multiplication table compared to a two by two binary multiplication table 
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Of course, the downside of binary is that lots of 0’s and 1’s are needed for representing even moderately 

sized numbers. 

 

To partially address this problem with binary notation, octal (base 8) and hexadecimal (base 16) notations 

were introduced since it is easy to convert between binary and octal/hexadecimal using a simple group by 

three for octal and group by four for hexadecimal conversions. To represent large numbers, octal and 

hexadecimal notations need fewer digits than binary (so were considered more human-friendly). However 

more digits are needed for hexadecimal.  

 

The letter A through F are used in hexadecimal to represent the decimal values 10 through 15.  

 

decimal binary octal hexadecimal decimal binary octal hexadecimal 

0 0000 0 0 8 1000 10 8 

1 0001 1 1 9 1001 11 9 

2 0010 2 2 10 1010 12 A 

3 0011 3 3 11 1011 13 B 

4 0100 4 4 12 1100 14 C 

5 0101 5 5 13 1101 15 D 

6 0110 6 6 14 1110 16 E 

7 0111 7 7 15 1111 17 F 

 

Any sufficiently advanced technology is indistinguishable from magic. 

        -- Arthur C. Clark’s 3rd Law 

 

Any sufficiently advanced civilization uses a numeric notational system based on a power of 2.  

       -- Shelburne’s corollary (with all modesty)  

 

Biquinary Notation and Roman Numerals 
 

Biquinary notion represents a “decimal” digit (or value) as a pair – usually a five and a one. For example, 

eight would be a “five + three ones”. Roman Numerals are similar to but not quite biquinary since they 

use different symbols for five (V), 50 (L), and 500 (D) as well as different symbols for one (I), ten (X), 

100 (C), and 1000 (M). The Roman Numeral VIII equals eight while the Roman Numeral LXXX equals 

80. 

Decimal Multiplication Table 

× 0 1 2 3 4 5 6 7 8 9 

0 0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 7 8 9 

2 0 2 4 6 8 10 12 14 16 18 

3 0 3 6 9 12 15 18 21 24 27 

4 0 4 8 12 16 20 24 28 32 36 

5 0 5 10 15 20 25 30 35 40 45 

6 0 6 12 18 24 30 36 42 48 54 

7 0 7 14 21 28 35 42 49 56 63 

8 0 8 16 24 32 40 48 56 64 72 

9 0 9 19 27 36 45 54 63 72 81 

Binary 

Multiplication 

Table 

× 0 1 

0 0 0 

1 0 1 
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Is there a best base for numbers? 
 

Binary notation requires only two digits: 0 and1 but you need a lot of digits (or bits) to represent even a 

moderately sized number (1000 decimal requires 10 bits: 1111101000b). Decimal notation has ten 

digits, but fewer digits are needed to represent moderately sized numbers. Is there a best base or most 

efficient base between 2 and 10?  That is, given the trade-off between the number of digits needed for a 

given base  and the number of digits needed to represent an integer n is there a best base?  

 

Observe that given any integer n, the number of digits base  needed to represent integer n is 

given by 
( )

( )

ln

ln

n


 where ln( )x is the natural log function (recall Phaetons’ Ride and Measured 

Illusion). For example, and you can compute this yourself, for base 10, 1000 (decimal) requires 

( )

( )

ln 1000
3

ln 10
=  decimal digits while in base 2 the same value requires, 

( )

( )

ln 1000
9.9657

ln 2
= rounded 

up to 10 binary digits. Actually it doesn’t matter what base logarithm function you use, 

( )

( )
10

10

log 1000
3

log 10
= and 

( )

( )
10

10

log 1000
9.9657

log 2
= where ( )10log x  usually just written as log( )x , is the 

log base 10 or common logarithm. 

So the larger the base  , the smaller the number of digits 
( )

( )

ln

ln

n


needed to represent an integer n while 

the smaller the base  , the larger the number of digits 
( )

( )

ln

ln

n


needed for n. As one increases (either β or 

n) the other (either n or β) decreases.  This suggests that the product of base with 
( )

( )

log

log

e

e

n


to form the 

function ( )
( )

( )

ln

ln

n
f  


=  might have a minimal value for some base  . And indeed, it does – 

independent of n.  

If we graph ( )
( )

( )

ln

ln

n
f  


=  for different 

values of n (see plot on right)  we see that there 

is value for   which minimizes  the function  

( )
( )

( )

ln

ln

n
f  


=  . 

 

In the plot on the right, we plotted  

( )
( )

( )

ln

ln

n
f  


=   for three different values of n:  

10 (blue),  100 (red) and 1000 (black). Note how 

all three graphs appear to have the same 

minimum value at 2.7182829 which is e. 
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Aside: We can also find this minimum point using calculus by taking the derivative of ( )f  , solving for 

zero, and testing that the critical point is absolute minimum (recall Zero). 

 

So, the most efficient base is base e = 2.7182818… which is not an integer. The closest integer is 3 which 

leads us to the next consideration… 

 

Ternary Notation 
 

If binary notation is base 2, ternary notation is base 3 with three digits 0, 1, and 2 where the weight of 

each digit is a power of 3. For example: 

 
3 2 1 01201 1 3 2 3 0 3 1 3 27 2 9 1 46=  +  +  +  = +  + =  

 

Thus, it’s easy to do ternary to decimal conversion by expanding and adding the powers of three with the  

non-zero coefficients.  

 

For example: 1 0

512 1 3 2 3 3 2 5=  +  = + =  and 2 1 0

3122 1 3 2 3 2 3 9 6 2 17=  +  +  = + + =  

 

Postfix subscripts are used to indicate the base or radix of the number for non-decimal representation. 

 

Converting decimal to ternary is a bit harder as it’s done by subtracting out powers of 3. This can be 

formally done using a variation of the tableau method for decimal to binary conversions (recall -2) where 

we use and list the powers of 3 (e.g. 81  27  9  3  1)  right to left in the second row.)  

 

 

 

Example: converting 46 to ternary notation: 

 

 

 

 

Check: 3 2 1 0

31201 1 2 0 1 1 2 0 1 463 3 3 3 27 9 3 1=  +  +  +  =  +  +  +  =  

 

Obviously, it helps to know the powers of 3: 1, 3, 9, 27, 81, 243, 729 … 

Another technique is to repeatedly divide by 3 and note the remainders. This gives you the ternary digits 

in reverse order (from least significant to most significant).   
 

       3 \ 46 

          ---- 

       3 \ 15   r 1 

          ---- 

       3 \  5   r 0  

          ----  

       3 \ 1    r 2            

          ----       

           0    r 1        1 2 0 1 

 

Aside: The same technique where we divide by 2 and note the remainders can be used to convert decimal 

to binary. 

0 1 2 0 1 

81 27 9 3 1 

 46 

-27 

19 

19 

-18 

1 

 1 

-1 

0 
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Balanced Ternary Notation – The Goldilocks of Numbers  
 

If base 3 (ternary notation) uses the digits 0, 1, and 2 then balanced ternary notation uses the digits 1, 0 

and -1 (which could be written as (-1)) . Since a digit can have a negative value, -1 or (-1) we’ll use the 

digit M for (-1) since it’s “notationally” awkward to use (-1).  
 

For example, ( ) ( )1 1 05 1 1 3 1 3 1 3 9 3 1 5MM= =  + −  + −  = − − = . While at first glance balanced ternary 

seems awkward, it has several interesting features.  

 

First, positive numbers begin with 1, negative with M. For example:  M013 = (-9)+1 = -8 while 

10M3 = 9+(-1) = 8.  Not need for separate + and – signs. 

 

Second, to negate exchange M’s with 1’s and vice versa leaving 0’s alone.  Negating M013 is 10M3.   

 

Third, balanced ternary addition rules are given in the following table. 

 

 

 

 

 

 

 

 

Of the nine addition rules, only two require a carry: M + M = M1 and 1 + 1 = 1M. There are two 

cancelation rules: M+1=0 and 1+M=0. The other five rules have 0 as one of the operands (addition with 

0) . This simplifies addition.  

 

Balanced ternary to decimal conversion is done by expanding by powers of powers of 3 (allowing 

negative values) as was done with ternary to decimal notation. For example:  

 
3 2 1 01M01 1 3 ( 1) 3 0 3 1 3 27 9 1 19=  + −  +  +  = − + =  

 

Decimal to balanced ternary conversion of positive integers is a two-step process. First convert to 

decimal to ternary.   

319 201=  

 

Next replace all 2’s with M and add 1 to the next digit up (a carry?) using the rules for addition (which 

may require some propagation of carries) 

3 3201 1M01=  

 

 For a negative decimal integer, convert the positive absolute value to balanced ternary then negate.  

 

Balanced Ternary Arithmetic 
 

Addition was covered above. Subtraction is done by first negating the subtrahend then adding it to the 

minuend  Remember to negate a value, replace1 by M and  M by 1 (leaving 0 alone). For example: 

 

 

Balanced Ternary 

Addition 

+ M 0 1 

M M1 M 0 

0 M 0 1 

1 0 1 1M 
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      12     110     110     7     1M1      1M1  

     - 7   - 1M1   + M1M   -12   - 110    + MM0 

     ---    ----    ----   ---     ---      ---  

       5             1MM         -5              M11   

 

 

Multiplication is also easily done since each partial product is either the 

multiplicand properly shifted if the corresponding multiplier digit is 1, 

0 if the multiplier digit is 0, or the negative multiplicand (easily 

computed) properly shifted if the multiplier digit is M. Again, the 

complexity is in summing the partial products.  

 

 

 

Division is left as an exercise for the student. (Hint: Recall binary division covered in -2.)  

 

Which is the best base? 
 

“Rulers, yardsticks, squares are decimal sizes, 

and twelve divides into halves, fourths, 

into thirds, sixths and, of course twelfths. 

Can’t beat it for building 

twelve is the best number.” 

 

 

However, from a purely human point of view the fact that twelve easily divides into halves, thirds, fourths, 

and sixths (common fractions) does make 12 useful. Besides canned goods pack nicely into 3 x 4 or 4 x 6  

(24 items) arrays for boxing and a dozen eggs pack nicely into 2 x 6 cartons.   

 

 

 

 

 

 

 

 

 

 

The base 10 metric system never really caught on in the United States 

 

  

Balanced Ternary 

Multiplication 

× M 0 1 

M 1 0 M 

0 0 0 0 

1 M 0 1 
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Prime Syllable Song 
 

Prime  

numbers  

do not care  

to make a rhyme.  

They blaze wild pathways.  

While others tow the line,  

they play crwths or smash guitars,  

unlike composite counts assigned  

to echo harmonic notes in time  

and avoid the oddball and ill-defined.  

Without primes, though, the music would be boring,  

the sing-song regularity, the constant whine  

would drive all of us absolutely batshit bonkers.    – E.R. Lutken (3: A Taos Press © 2021) 

 

Results About Primes 
 

 
 

Primes vs Composite Numbers 
 

A prime is an integer greater than 1 whose only divisors are itself and 1 – for example 17. A number 

which is not prime is called a composite number. All composite numbers have prime divisors (aside from 

itself and 1). For example, the composite number 15 has 3 and 5 as prime divisors. 

 

Note that 1 is considered to be neither prime nor composite. 
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 These are 25 primes less than 100. The ones in red are twin primes, pairs of primes which differ by 2.  

 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 

 

There are 168 prime numbers less than 1000. 

 

The first fact about primes is that every integer greater than 1 has a prime divisor. Seems obvious but here 

is the proof which depends on something called the Well-Ordered Property of Positive Integers.  

 

Well Ordered Property: Every non-empty set of positive integers has a least element. 

 

This property of positive integers should be intuitively obvious so it requires no proof; it’s axiomatic! The 

positive integers are ordered and given any non-empty set of them, they can be arranged from smallest to 

largest with the smallest being the least element.  

 

Proving that every integer has a prime divisor makes use of an indirect proof (recall Irrational Loss) 

where assuming the conclusion is false leads to a contradiction forcing us accept the conclusion as being 

true. 

 

Let’s assume the conclusion is false: there are positive integers greater than 1 which have no prime 

divisor. Let’s call this non-empty set of positive integers greater than 1 with no prime divisors S. By the 

Well-Ordered Property set S has a least element, call it k. Obviously k is not prime since each prime is its 

own divisor and k >1, so k is composite meaning that k has at least two smaller factors a and b both 

greater than 1 such that k a b=  . But a and b are not in set S (k is the smallest element in S) so both a 

and b have prime factors which by the transitivity of division (if x divides y and y divide z then x divides 

z) implies k has prime factors obtained from a or b. So k cannot be in S so a least element k for at non-

empty set S cannot exist. For the Well-Ordered Property to be true, the set S must be empty. Therefore, 

every positive integer has a prime factor! - QED 

 

Is there a largest prime? 
 

There is no largest prime – a result and its proof found in Euclid’s Elements ca. 300 BCE. The proof is 

quite simple and uses the following result. 

 

Result:  Given any finite set of primes, there is another prime not in that set! 

 

Proof: Given any finite set of n primes  1 2 3, , ,... np p p p consider the number p obtained by multiplying 

the n primes together plus 1: that is 1 2 3 ... 1np p p p p=     + . Now either p  is prime (so p is a prime 

not in the set) OR p  has a prime factor q  but in this latter case q  cannot be one of the ip  for 

1,2,3,...,i n=  because if q = pk for some pk in the set  1 2 3, , ,... np p p p then q = pk divides the difference 

1 2 3 ... 1np p p p p−     =  so  q  would divide 1 which is impossible! 

 

Corollary: The set of primes is infinite since if the set of primes was finite, using the above result we can  

find an additional prime not in the set.  

 

However, as we look at larger and larger integers the primes seem to become less numerous. In fact,  

 

there are arbitrarily long stretches of consecutive integers which contain no primes. 
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For example. consider the product of the consecutive primes from 2 to 11; that is … 

 

2 3 5 7 11 2310    = . 

 

The 11 consecutive integers 2312, 2313, …, 2322 obtained by adding the eleven consecutive integers 2, 

3, … 12 to 2310 are all composite (why?).  

 

Hint: 2312 = 2310+2,  2313 = 2310+3,  2314 = 2310+4 ,…,  2321 = 2310+11,  2322 = 2310+12  

 

To generalize: If np is the nth prime then adding the np consecutive integers 2 through 1np + to the 

product of the consecutive primes 2 through np results in a stretch of np  consecutive integers all of 

which are composite.  

 

For example, if np  is a prime greater than a million, there is a stretch of more than a million consecutive 

integers all of which are composite – no primes.  

 

So, while the primes form an infinite set,  there are arbitrarily long stretches of integers with no primes! 

 

Primes as building blocks of the integers 
 

Primes are often referred to as the building blocks of the positive integers since every integer greater than 

1 can be uniquely factored into a product of primes. This is the so-called Fundamental Theorem of 

Arithmetic which states: Every positive integer greater than one can be uniquely decomposed into a 

product of primes – a result and proof also found in Euclid’s Elements (300 BCE). 

 

For example: 
260 2 2 3 5 2 3 5=    =    or 210 2 3 5 7=     

 

This also supports the idea of why 1 should not be considered a prime since the uniqueness of the 

factorization would be compromised by allowing none or multiple factors of 1 to be included in a  product 

 

“Without primes, though, the music would be boring,” 

 

Finding primes 
 

It’s not difficult to determine if a positive integer n is prime or composite. Since a composite n  must 

have a prime divisor smaller than n , we only need to test if n is divisible by some prime less than n . 

 

For example, any integer less than 100 has a prime divisor less than √100 = 10. There being only 4 primes 

less than 10, that is 2, 3, 5, and 7, a simple test for primality is to test divide n by each of 2, 3, 5, and 7. If 

none of the test divisors (2, 3,5, and 7) divide evenly into n (i.e. each division has a non-zero remainder), 

then n is prime.  

 

Aside: Checking for divisibility by 2, 3 and 5 is easy since there are simple rules for each; checking for 

divisibility by 7 is a bit harder.   
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Since the eleven primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31 are all less than 1000 31.622=  (with 

37 being the next largest prime) at most 11 trial divisions will detect any prime less and or equal to 1000.  

 

And given the 25 primes less than 100, 

 
    2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97 

 

at most 25 trial divisions will detect a prime less than 
2100 10,000=  

 

See the Appendix for a Python Program that uses 25 primes less than 100 to detect primes up to 10,000.  

 

A more efficient test for primes is based on the converse of the Fermat Little Theorem discussed below 

BUT it’s doesn’t always work! 

 

 

How are the primes distributed? 
 

As mentioned above, the number of primes is infinite; there is no largest prime. However, as we go 

further out on the number line of integers, the primes become more scarce. Moreover, as shown above, 

there are arbitrarily long sequences of consecutive integers where no primes are to be found.  

 

How are the primes distributed? That is, is there a way to determine the number of primes less than or 

equal to some integer n? We define the prime counting function ( )n to be the number of primes less 

than or equal to n.  (Note ( )n is not to be confused with the constant  ) 

 

For example, ( )10 4 = since there are 4 primes (2,3,5,7) less than or equal to 10. ( )11 5 = , ( )12  = 5 

while ( )13 6 = . The value of ( )n  jumps when n is a prime number. 

 

Parenthetically, ( )n could  be used to test if an integer n is prime since n is prime if and only if 

( ) ( )1 1n n = − + ; that is there is a jump at n. Unfortunately, there is no “exact equation” for ( )n . We 

can compute ( )n for small values of n by listing and counting all primes less than or equal to n but this 

is not an efficient method. For example …  

 
n  ( )n  

10 4 

100 25 

1,000 168 

10,000 1229 

100,000 9592 

1,000,000 78498 

 

However, the Prime Number Theorem states: 

( )

( )( )
lim 1

lnn

n

n n



→
=  
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That is in the limit as n get large the number of primes less than or equal to n is approximately 
( )ln

n

n
 . 

The key idea is in the limit as n approaches infinity; otherwise, it doesn’t seem very accurate. 

 

 For example: ( )100 25 =  while 
( )

100
21.71

ln 100
 : ratio = 

25
1.1515

21.71
  

  ( )1000 168 = and 
( )

1000
144.76

ln 1000
 : ratio 

168
1.1605

144.76
    

  ( )10,000 1229 = and 
( )

10,000
1085.74

ln 10,000
 : ratio 

1229
1.1319

1085.74
  

  ( )100,000 9592 = and 
( )

100,000
8685.89

ln 100,000
 : ratio 

9592
1.1043

8685.89
  

  ( )1,000,000 78,498 = and 
( )

1,000.000
72382.41

ln 1,000,000
 : ratio 

78498
1.0845

72382.41
  

 

“Prime  

numbers  

do not care  

to make a rhyme.  

They blaze wild pathways.” 

 

So although the approximation to ( )n given by 
( )ln

n

n
 from the Prime Number Theorem does not seem 

very accurate,  if we take the limit of the quotient as n get large, the ratio does approach 1.   

 

It is interesting that Carl Friedrich Gauss (1777-1855) suggested an alternate approximation to ( )n , the 

logarithmic integral function ( )
( )2

1

ln

n

Li n dt
t

=  which seems to give a slightly more accurate 

approximation. For example, ( )1000 176.5645Li =  (recall ( )1000 168 = ). 

 

Some simple unknown results about primes 
 

There are some simple to state but no proof of statements about primes; that is conjectures about primes.  

 

Goldbach’s Conjecture 
  

Is every even integer n  ≥  4 the sum of two primes? e.g. 100 = 41 + 59. In 1742, Christian Goldbach 

(1690 – 1764) communicated this observation to the famous mathematician Leonard Euler (1707 – 1783).  

While easy to demonstrate, it has not been proved (or disproved as no counterexample has been found). 

Nevertheless, many, including Euler, suspect it to be true (but perhaps unprovable?).   
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The Twin Prime Conjecture 

 
Twin Primes (in red) like 3 & 5, 5 & 7, 11 & 13, 17 & 19, 29 & 3, 41 & 43, 59 & 61, 71 & 73 etc. are 

primes that differ by 2. (Note 3, 5, 7 is the only triple prime set.) An interesting feature is that if p and 

p+2 are twin primes, then p+1 is divisible by 6. For example, 71 and 73 are twin primes and 72 is 

divisible by 6. However, while 24 is divisible by 6, only 23 is prime (the smallest singleton prime). 

There are eight pairs of twin primes less than 100 (listed above), 35 twin prime pairs less than 1000, and 

205 twin prime pairs less than 10,000 as compared to 25 primes less than 100, 168 primes less than 1000 

and 1229 primes less than 10,000. Not surprisingly and like the primes, twin primes get scarcer as the 

integers increase. However, while we know there is no largest prime (the number of primes is countably 

infinite), what we don’t know is whether the same is true for the twin primes even though their numbers 

decrease faster as we go out the number line of integers.  

 

The Twin Prime Conjecture says there is no largest pair of twin primes: easy to state and understand; 

obviously difficult (or impossible?) to prove. 

 

Beyond Twin Primes 
 

Cousin Primes? These are prime pairs that differ by 4. For example: 3 & 7, 7 & 11, 13 & 17, 19 & 23,  

37 & 41, 43 & 47, 67 & 71, 79 & 83, 97 & 101 – 9 pairs less than 101. There are 41 pairs under 1000  

 

Sexy Primes? These are prime pairs that differ by 6. For example: 5 & 11,  7 & 13, 11 & 17, 17 & 23, etc. 

Sexy is a “play” on the Latin word for six (6): sex. There are 14 pairs less than 103 (97 & 103 being the 

largest) and 74 pairs less than 1000 

 

Summing the reciprocals of primes 
 

Consider the integers: 1, 2, 3, 4, 5, … and their reciprocals 
1 1 1 1

1, , , , ,...
2 3 4 5

…  

The Harmonic Series 
1

1 1 1 1 1 1
1 ...

2 3 4 5k k k



=

= + + + + + + + →  diverges (recall Measured Illusion) 

 

 

Consider the powers of 2: 1, 2, 4, 8, 16, …, 2n , … and their reciprocals 
1 1 1 1 1

1, , , , ,..., ,...
2 4 8 16 2n

  

 

The Sum of the Reciprocals of the powers of 2 
0

1 1 1 1 1 1
1 ... ... 2

2 2 4 8 16 2k k
k



=

= + + + + + + + = converges 

(recall Cantor’s Ghazal) 

 

 

Consider the squares: 1, 4, 9, 16, 25, … and their reciprocals 
1 1 1 1

1, , , , ,...
4 9 16 25

 

The Sum of the Reciprocal Squares 
2

2 2
1

1 1 1 1 1 1
1 ... ...

4 9 16 25 6k k k



=

= + + + + + + + = converges –  a  famous 

result (the Basel Problem)  proved by Leonard Euler (1707-1783) (see π ).  
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Consider the primes: 2, 3, 5, 7, 11, 13, …  and their reciprocals 
1 1 1 1 1 1

, , , , , ,...
2 3 5 7 11 13

  

 

The Sum of the Reciprocal Primes: 
1 1 1 1 1 1 1

... ...
2 3 5 7 11

kp P kk p

= + + + + + + + → diverges where 
kp is the 

kth prime from the set of all primes P – again proved by Leonard Euler. . 

 

Somehow, the gaps between consecutive primes are, in some sense, smaller than the gaps between 

consecutive squares and powers of 2– enough so that the sum of their reciprocals diverges. Interesting! 

 

Fermat Primality Test (base a) and Carmichael Numbers 
 

The Little Fermat Theorem states that if p is prime and a is any integer relatively prime to p (i.e. a and p 

share no common factors) then 1 1 modpa p−   (i.e. p divides 
1 1pa − − ), or equivalently, modpa a p . 

In other words, p divided into
pa has a remainder a. For example, 7 is prime and 

72 2128 7 18= =  +  or 
72 72 mod= . Observe that 9 is not prime and 2 and 9 are relatively prime so

92 8512 9 56= =  +  or  
92 92mod . 

 

The converse to the Little Fermat Theorem states if 1 1 modpa p−  or equivalently, modpa a p and a is 

relatively prime to p (which means a and p share no common factors) then p is prime. This might be a 

good test for primality. For example, if p is any odd integer (p and 2 are relatively prime) and if 

2 2 modp p then p is prime – a possible test for primality? 

 

Unfortunately, this converse to the Little Fermat Theorem, the Fermat Primality Test, is false. 

 

Counterexample: 341 11 31=  is the smallest composite number that demonstrates that the Fermat 

Primality Test (base 2) can give a false result; that is 
341 mod 3412 2 . That is 341 divided into 3412 (a 

very large number) has a remainder of 2 but 341 is composite, not prime. Hence 341 is called a Fermat 

Pseudo-Prime (sort of a false positive for primality), not a prime!  

 

Aside: There are efficient mathematical techniques to perform calculations like 3412 mod 341   

 

However, had we used 3 instead of 2 we have 
3413 168 mod 341  (341 divided into 3413 has remainder 

168) so using the Fermat Primality Test (base 3) detects that 341 is not prime; 341 is not a Fermat 

Pseudo Prime (base 3).  

 

But 91 mod 913 3 makes 91 a Fermat pseudo-prime base 3 except 91 7 13=  ; 91 is not prime but 

composite. Of courses using 2 instead of 3 results in 912 37 mod 91  so  91 is not a Fermat pseudo-prime 

base 2 . Using 2 we would have immediately detected that 91 is not prime.   

 

The Fermat Primality Test depends on the base a being used. One way to strengthen the Fermat Primality 

Testing would be to use multiple base a’s, for example a = 2, 3, 5, and 7 and if p passed the Fermat 

Primality Test for multiples bases, the odds are good (but not absolute) that p is indeed prime. For large 

candidates p, this test is more efficient than sequentially dividing p by all primes less than p   



114 
 

 

However – there is a problem! 

 

There are composite numbers, called Carmichael Numbers which always pass the Fermat Primality Test 

for all bases a. That is, a Carmichael Number p has the property that modpa p a= for all a such that 2 ≤ 

a < p  yet p is not prime. The first three Carmichael Numbers are1105 5 13 17=   , 561 3 11 17=   , and 

1729 7 13 19=   the famous taxicab number (see 1729).  

 

So what use are primes? 
 

Answer: Public Key Encryption like the RSA algorithm. Factoring a large number is computationally 

very difficult. The RSA algorithm encryption uses a numeric key which is the product of two very large 

primes. It can only be broken if their product is factored – which is computationally difficult to do 

(although computers are getting faster and faster).   

 

In outline the RSA Encryption Algorithm works like this  

 

Alice wants to send a message to Bob. To do so she needs Bob’s public key to encrypt the message. 

 

Bob generates his public key as follows: Starting with two very large primes, p and q, he computes their 

product n p q=  . Next Bob chooses a second integer e which is relatively prime to ( ) ( )1 1p q−  − ; that 

is e and ( )( )1 1p q− − have no common factors. The numbers e and n are the public keys. So e and n are 

made known to Alice or to anyone else who wants to send an encrypted message to Bob.  

 

The reason RSA Encryption is secure is that the key to breaking RSA requires factoring n to recover p 

and q. The primes p and q are the private keys known only to the receiver Bob who can use them to 

decrypt any encrypted message sent to  him 

   

In outline it works like this:  

 

Encryption: Given a message M (a large integer), Alice using the public keys e and n encrypts M by 

computing modeE nM= . E is sent over an unsecure channel. 

 

Decryption: To decrypt E and recover message M, Bob uses his private keys p and q. The mathematics is 

somewhat complex and among other results about primes, it makes use of Fermat’s Little Theorem.  

 

Mersenne Primes 
 

Primes of the form 2 1n − are called Mersenne Primes named after Fr. Marin Mersenne (1588 – 1648) a 

Minim Friar who corresponded with many of the French intellectuals and mathematicians of the early 17th 

century including Pascal, Descartes, and Roberval. For example, 22 1 3− = , 32 1 7− = , 52 1 31− = etc. are 

all examples of Mersenne Primes. In fact, if 2 1n − is prime then so is n. Unfortunately, the converse is 

false; n can be prime but 2 1n − is composite. For example,  
112 1 2047 23 89− = =  . 

 

The GIMPS (Great Internet Mersenne Prime Search) is an organized search for Mersenne Primes using a 

volunteer network of computers. Currently the 47th Mersenne Prime (as of 8/2008) is 43,112,6092 1− . The 

largest known Mersenne Prime (as of 12/2018) is 82,589,9332 1− which may be the 51st Mersenne Prime but 

unlike the 47th Mersenne Prime not all primes between 43,112,609 and 82,589,933 have been checked. 
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But There’s More – The Euclid- Euler Theorem 
 

Euclid (c. 300 BCE) proved that if 2 1n − is prime then ( ) 12 1 2n n−− is a perfect number, that is a number 

whose proper divisors sum to that number. For example, ( )2 2 12 1 2 3 2 6−− =  = where the proper divisors 

of 6 sum to 6; that is1 2 3 6+ + = . Likewise, ( )3 3 12 1 2 7 4 28 1 2 4 7 14−− =  = = + + + + .  Two thousand 

years later in 1747 Euler proved that every perfect number is in the form of ( ) 12 1 2n n−− where 2 1n − is a 

Mersenne Prime. Thus, there is a tight connection between Mersenne Primes and even perfect numbers. 

 

It is not known if there are odd perfect numbers. 

 

“Without primes, though, the music would be boring, 

the sing-song regularity, the constant whine 

would drive all of us absolutely batshit bonkers.” 

 

 

Mirror Twin Primes, Palindromic Primes, Permutable (Absolute) Primes, repunit 

Primes  
 

Given a prime, if you reverse the digits, is the result a prime? For example, 17 and 71 are reversed digit 

primes or mirror primes as are 13 and 31, 37 and 73, 79 and 97. 11 and 101 are palindrome primes (see 

below).  

  

A mirror twin prime combines the properties of being both a twin prime and a mirror prime – for example 

the prime 73 is the twin of the prime 71 and is the mirror of the prime 37. 71 itself is also mirror twin 

prime since its mirror 17 is prime. The primes 13 and 31  are also mirror twin primes (11 is the twin of 13 

and 29 is the twin of 31). 

 

Now consider linking Mirror and Twin Primes:  

 

37 - 73 - 71 - 17 – 19 – 91 = 7 × 13 or  11 = 13 = 31 = 29 - 92 = 2 × 2 × 23 

 

A sequence of primes arranged so adjacent primes are either mirror twins or twin primes (i.e. the differ by 

2) is a mirror - twin prime sequence.  

 

Example: Seen above 19, 17, 71, 73, 37 is a mirror – twin prime sequence of length 5 (note that 91 is 

composite so 19 is only a twin prime while 37 is only a mirror prime as 35 and 39 are composite). 

 

1303, 1301, 1031,1033, 3301, 3299, 9923 is a mirror – twin prime sequence of length 7.  

 

Obviously mirror and palindrome primes begin and end with the digits 1, 3, 7, and 9; 

 

A palindromic prime is a mirror twin prime with itself, like 11, 101, and 131. Scanning the digits 

forwards or backward is the same.  

 

With a permutable or absolute prime, if you reorder the digits in any way, you have a prime. For 

example, 113, 131, and 311 are absolute primes as are 337, 373, 733, and 199, 919, 991. 
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A repunit (repeated unit) prime is a type of an absolute prime whose only digits are 1’s – like 11.  

1111111111111111111=R19 is the next largest repunit prime.  
 

A List of Absolute Primes 
 

 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 
733, 919, 991, 1111111111111111111=R19, 11111111111111111111111=R23,R317, R1031 

 

Note The notation Rn refers to a number consisting of n 1’s  -   

 

A prime is a mirror prime, a palindromic prime or absolute prime depending on the radix or base used to 

represent the prime while being a twin prime is independent of the base or radix used to represent the 

prime.  While 73, the twin of 71, is not a palindromic prime base 10, the numeric value 73 is a 

palindromic prime base 2 since 73 = 10010012. 

 

815 and 851 are mirror primes base 8 (decimal values 13 and 41) and both are twin primes base 8; that is 

813 and 853 base 8 are decimal values 11 and 43 respectively.   

 

Big Bang Theory, Sheldon, and the prime 73 
 

In episode 73 of the Big Bang Theory Sheldon announces that 73 is the best number. 

 

 73 is the 21st prime and its mirror twin 37 is the 12th prime. 

 From 37, the product of its two digits 3 and 7 is 21. 

 73 in binary is 1001001 a palindrome prime base 2. 

 17 the mirror twin of 71, the twin prime of 73 is also a binary palindrome: 100012 

 

Note: Jim Parsons was born in 1973. In many shows he’s wearing a t-shirt with the number 73 on it 

 

“Thunderous lightning seldom strikes twice  

in time and place. But sometimes  

 

it does.” 
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And Over and Again 
 

Sieve of Eratosthenes 

 

And over and again, tidal waves scrub, rinse, and sift cluttered sets: bones, jetsam, 

driftage of briny matter, myriad sea-gifts. Split bivalves, slime, starfish, nacreous 

scallops present bits to an opalescent ocean-deep of past living-treasure lairs. 

Primordial glittering stew washes in broad cycles, current traces plankton, drifting, 

shimmering towards the scrambled amalgam, anxious jumbled future. Splintered rift 

tears ruins of coral atolls, scours into mounds the smooth polished stone, roiling 

whirlpools’ motes glistening into spindrift. Jostled, dancing, pattering sand leaves 

sounds in the shells; precious music, magic symphony, chattering echos, beautiful, 

watery abluvion, soft singing sea. 

 

And tidal scrub and cluttered bones, driftage, briny myriad gifts, bivalve, starfish, 

scallops’ bits, an ocean of living lairs, glittering, washes broad current, plankton 

shimmering. The amalgam, jumbled, splintered tears of atolls into the polished  

roiling motes, into jostled pattering leaves. In shells, music symphony echoes  

watery-soft sea. 

 
– E.R. Lutken (3: A Taos Press © 2021) 

  

Sieve of Eratosthenes 
 

Eratosthenes (ca 284 – 192 BCE) was a famous 3rd century BCE Greek mathematician known among 

other things for his method for finding primes. His Sieve of Eratosthenes is  a technique that is expressed 

poetically in the poem Over and Over. 

 

Begin by listing out the numbers say from 2 to 100 (recall 1 is not considered a prime). Then 

starting at 2 cross out every 2nd entry. This eliminates all integers divisible by 2.For example … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And over again, waves rinse, sift sets, jetsam of matter, sea-split slime, nacreous 

present to opalescent, deep past. Treasure, primordial stew in cycles, traces drifting 

toward scrambled, anxious future rift ruins. Coral scours mounds’ smooth stone, 

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100
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whirlpools’ glistening spindrift. Dancing sand sounds the precious, magic chattering, 

beautiful abluvion singing. 

  

Rinse jetsam sea, nacreous, opalescent treasure in drifting anxious ruins, mounds, 

whirlpools dancing the chattering singing. 

  
And over again: The next not-crossed-out number after 2 is 3. Starting at 3 cross out every 3rd 

entry (including those already crossed out). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
And over again, waves sift sets of matter, split slime, present to deep past. Primordial 

stew cycles,  traces toward scrambled future rift; coral scours smooth stone, glistening 

spindrift. Sand sounds precious magic, beautiful abluvion.  

 

Slime-deep, scrambled coral sounds beautiful. 
  

And over again: After 3 the next-not-crossed-out number is 5. Cross out every 5th number starting 

at 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
And over again, waves sift sets of matter, split present to past. Primordial stew cycles, 

traces towards future rift, scours smooth stone, glistening spindrift, sand, precious, 

magic abluvion.  

 

Traces glistening magic. 

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100
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  And over again: After 5 comes 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
And over again, waves sift sets of matter, split present to past. Primordial stew cycles 

toward future rift, scours smooth stone, spindrift, sand, precious abluvion.   

 

         - E.R. Lutken 

 
And over again: After 7 is 11 but starting at 11 no more numbers are crossed out!–At this point 

all that remains (in black) are the primes between 2 and 100 – 25 of them to be exact. 

  

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100
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Eratosthenes is also known for his very accurate mathematically based 

determination of the circumference of the earth.  

 
Eratosthenes knew that at midsummer 

the sun was directly overhead in Syene, 

a town 5000 stades south of Alexandria. 

At the same time in Alexandria a small 

pole cast a shadow whose angle α with 

the pole was 1/50 the circumference of a 

circle. Since angle α equaled angle β, 

the arc subtended by angle β equaled 

1/50 of the circumference of the earth so 

50 × 5000 stades was the circumference 

of the earth. Assuming a stade was 

approximately 516.73 feet, this gave the 

earth’s circumference to be 24,466 

miles, a value remarkably close to the 

real value of 24,860 miles.  

 
 

 

  

Syene 

α = 1/50 of a circle 

5000 stades 

0\\0 

β 
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Triangular Numbers 
 

“ΕΥΡΗΚΑ! Num = Δ + Δ + Δ” 

- Carl Friedrich Gauss 

 

     One makes Two 

     Two Makes Three 

     Three makes all 

 

   naturals’   triangles 

   successive   adding to 

   summation   perfect squares 

 

  creator   immortal  mystical 

  preserver  beings, earth  three part soul 

  destroyer  water, sky  breath, wind, rest 

 

 three jewels  ancestors  trinity   messenger 

 teacher, truth  moral code  parent child  sacred texts 

 collective  transcendence  eidolon   lore, heart, word 

 

-- E R Lutken (3: A Taos Press © 2021) 

 

 

 

Carl Friedrich Gauss 1777 – 1855 
 

1. Young Carl Friedrich Gauss 
 

There is a story, perhaps apocryphal, about C.F. Gauss as a young boy. The story goes that Gauss’s 

teacher asked the class to sum the integers from 1 to 100 figuring, I suppose, that this would take the 

students some time to complete. Young Carl quickly came up with the correct answer: 5050. 

 

How did he do it? 

 

We think that young Gauss realized that there were two ways to sum the integers from 1 to 100  

 

– from low to high: 1 2 3 4 ... 98 99 100+ + + + + + +  and high to low: 100 99 98 ... 3 2 1+ + + + + + .  

 

Adding the two rows column by column  

 
    1 +   2 +   3 + … +  98 +  99 + 100 

+ 100 +  99 +  98 + … +   3 +   2 +   1 

  ------------------------------------- 

  101 + 101 + 101 + … + 101 + 101 + 101 = 100×101 = 10100 

 

allowed him to easily compute twice the sum and thus compute the final answer: 5050! 

 

This is the 100th triangular number 
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2. Triangular Numbers 
 

The nth triangular number, denoted as Tn, is the sum of the integers from 1 to n. For example, the third 

triangular number, T3, is 6 as 1 + 2 + 3 = 6 while the fourth triangular number, T4, is 10 as 1 + 2 + 3 + 4 = 

10. They are called triangular numbers because, as seen below, you can arrange 6 dots or 10 dots in a 

triangular configuration. 

 

 

Adding 5 dots to the base of T4 obtains T5, the next sized triangle. Thus, the connection between the sum 

of the integers 1 thru n and the corresponding triangular configuration of dots is easily seen.  

 

“naturals’ 

successive 

summation” 

 

Moreover, summing two adjacent triangular numbers, for example T3 + T4 gives you a square, in this case 

6 + 10 = 16 = 42.     

 

“triangles 

adding to 

perfect squares” 

 

Using young Gauss’s trick-calculation we can easily obtain a closed form for the nth triangular number by 

summing 1 through n both forwards and backwards, adding the two rows column by column, multiplying 

each “n+1” sum by n (since we have n sums) and dividing by 2.  

 

 
    1 +   2 +   3 + … + n-2 + n-1 + n 

+   n + n-1 + n-2 + … +   3 +   2 + 1 

  ------------------------------------- 

  n+1 + n+1 + n+1 + … + n+1 + n+1 + n+1 = n×(n+1) = n2+n 

 

Result: ( ) ( )
( )2 1

1 2 3 ... 2 1
2 2

n

n nn n
T n n n

++
= + + + + − + − + = =  

 

Using this formula, one can easily prove the sum of Tn-1 and Tn equals n2.  

 

Result: 
( ) ( ) 2 2 2

2

1

1 1 2

2 2 2 2
n n

n n n n n n n n n
T T n−

− + − + +
+ = + = = =  
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3. Gauss’ Eureka Theorem 
 

While it was well known that every square is the sum of two triangular numbers, Gauss showed that every 

integer is the sum of at most three triangular numbers - or allowing 0 to be the 0th triangular number, 

every integer is the sum of three triangular numbers. Hence:  

 

“ΕΥΡΗΚΑ! Num = Δ + Δ + Δ” 

- Carl Friedrich Gauss 

  

 

This is Gauss’s “Eureka Theorem” dated July 10, 1796 – when Gauss was 19 years old, the 18th entry in 

his diary which read “ΕΥΡΗΚΑ! num = Δ + Δ + Δ”. The proof is rather complicated but easy to 

demonstrate. First, it’s easy to list out triangular numbers:  

 

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, … 

 

Then given any integer n, it’s simply a matter of finding three triangular numbers (see above) to sum to n. 

 

Example:  17 = 10 + 6 + 1 = 15 + 1 + 1 

  35 = 28 + 6 + 1 = 15 + 10 + 10  

  100 = 91 + 6 + 3 = 78 + 21 + 1  

   

 

There may be more than one way to decompose an integer n into a sum of three triangular numbers. 

 

A Footnote  

 

The arrangement of the poem is the 4th triangular number 10: an arrangement also known as the tetractys 

which had some significance to the Pythagoreans, early mathematical mystics who coined the phrase “All 

is Number” – a statement that somehow mathematics is the key to understanding the natural world around 

us.   

 

Beyond Triangular and  Square Numbers – Figurate Numbers  
 

The nth triangular number nT is the sum of the first n integers: 1 2 3 ...nT n= + + + +  as shown above. The  

closed form equation for the nth triangular number is given by 
( )1

2
n

n n
T

 +
=  
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The nth square number 
2n is the sum of the first n odd integers: 

2 1 3 5 ... 2 1n n= + + + + −  as demonstrated 

below. Note that the difference of two adjacent squares is an odd integer and that every odd integer is the 

difference of two adjacent squares. 

 

 

 

 

 

 

 

 

 

 

 

But why stop here? There are pentagonal numbers where 1 4 7 ... 3 2nP n= + + + + − (note the increase by 

three – see below). The closed form equation is 

23

2
n

n n
P

−
=  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are cornered hexagonal numbers 1 5 9 ... 4 3nH n= + + + + − (note the increase by four) whose 

closed form equation is 22nH n n= −  etc … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 v

v 

 v

v 

 v

v 

 v

v 

v 
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There are so centered hexagonal numbers where 1 6 12 ... ( 1) 6nCH n= + + + + −  whose close form 

equation is 23 3 1nCH n n= − +  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And so on …. 

 

And finally, the Fermat Polygonal Number Theorem which states that every integer can be expressed as 

the sum of n  n-gonal numbers (using 0 is the zeroth n-gonal number) where Gauss’ Eureka Theorem is a 

special case. For example …  

 

Linear numbers (aka the natural numbers) : 1, 2, 3, 4, 5, … 

 

Triangular numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, …   100 = 91 + 6 + 3 

 

Squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, …     99 = 64 + 25 + 9 + 1   

 

Pentagonal Numbers: 1 5, 12, 22, 35, 51,70, 92, 117, …     100 = 92 + 5 + 1 + 1 + 1 

 

 

 

Back to Triangular and Square Numbers: Pyramidal Numbers 
 

Another feature of triangular (and square) numbers is that they appear in the stacking of a set of round 

objects, like cannonballs.  

 

 

 

One cannonball can be stacked atop three cannonballs as follows. 
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And in turn three cannonballs can be stacked atop six cannonballs 

with one cannonball stacked atop the three.   

 

And the six cannonballs can be stacked atop ten and ten atop fifteen etc.  

 

 

 

 

This yields the sequence 1, 1+3 = 4, 1 + 3 + 6 = 10, 1 + 3 + 6 + 10 = 20 …where the sum of the first n 

triangular numbers is the number triangular stacked cannonballs in a pile of height n. In general, this is 

… 

 

( )
( )( )3 2 1 23 2

6 6
t

n n nn n n
S n

+ ++ +
= =  

 

The same can be done with square stacking of cannonballs: 1 on top of 4 on top of 9 on top of 16 etc. 

yielding the sequence 1, 1 + 4 = 5, 1 + 4 + 9 = 14, 1 + 4 + 9 + 16 = 30 … where the sum of the first n 

squares is the number of square stacked cannonballs in a stack of height n. In general, this is …    

 

( )
( )( )3 2 2 1 12 3

6 6
s

n n nn n n
S n

+ ++ +
= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sums of Reciprocals? 
 

Finally, what about the sum of the reciprocals of the triangular numbers: 

  

( )1

1 1 1 1 1
1 ...

3 6 10 15k T k



=

= + + + + +  

 

Leibniz in Paris 1672-1676 
 

It was while Gottfried Wilhelm Leibniz (1646-1716), the co-discovered/co-inventor of calculus with Sir 

Issac Newton, was in Paris on a diplomatic mission that Leibniz learned mathematics. Knowing nothing 

or little about mathematics he sought help from the Dutch mathematician Christian Huygens(1629-1695) 

who assigned this problem to Leibniz to see if he, Leibniz, could solve the problem of computing the sum 
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of the reciprocals of the triangular numbers; that is 
( )

1 1 1 2
1 ... ...

3 6 10 1n n
+ + + + + +

+
. , an infinite series 

which (unlike the Harmonic Series) converges. 

 

Here is the solution:  

 

Let 
1 1 1 1

1 ...
3 6 10 15

S = + + + + +  

Then 
1 1 1 1 1 1

...
2 2 6 12 20 30

S = + + + + +  

which can be expressed as  
1 1 1 1 1 1 1 1 1 1

...
2 2 2 3 3 4 4 5 5 6

S
       

= + − + − + − + − +       
       

  

which with some regrouping yields  

 

1 1 1 1 1 1 1
...

1 1 1 1

3 42 2 2 3 4 5 65 6
S

         
= + + + + + + + + + +         
         

− − − −  

But everything except the first two terms cancels leaving 
1 1 1

2 2 2
S = +  

Therefore if 
1

1
2

S = then 2S = so 
( )1

1
2

k T n



=

=  

And the rest (for Leibniz and mathematics) is history. 

 

Recall that Leonard Euler solved the famous Basel Problem where he computed the sum of the 

reciprocals of the squares (recall π) 

 

Pythagorean Triples 

 
A Pythagorean Triple is a triple of three integers a, b, and c such that 

2 2 2a b c+ = , for example 3,4, and 

5 is a Pythagorean Triple since 
2 2 23 4 9 16 25 5+ = + = =   

 

Since every odd integer is the difference between two adjacent squares, there is a method to find 

a Pythagorean Triple given that the smallest component is an odd integer. Then the other two 

components can be obtained from the first since the square of an odd integer is also odd.  

For example, 29 3=  is the odd square of an odd integer.  It follows that 

2
2

2 3 1
16 4

2

 −
= =  

 
and 

2
2

2 3 1
25 5

2

 +
= =  

 
. Therefore, using as little algebra … 

2 2
2 2 4 2 4 2 2

2 2 2 3 1 4 3 3 2 3 1 3 2 3 1 3 1
3 4 3 25

2 4 4 2

   −  + −  + +  + +
+ = + = = = =   

   
 

 

This method of obtaining the other two Pythagorean triple members from the first  generalizes. 
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Result: If m is an odd integer greater than 1, then  

 
2 2

2 2
2 1 1

2 2

m m
m

   − +
+ =   
   

and 
2 21 1

, ,
2 2

m m
m
 − +
 
 

is a Pythagorean Triple 

 

Note that if m is odd and greater than 1 both 
1

2

m −
and 

1

2

m +
are integers, and  

2 2
2 2 4 2 4 2

2 1 4 2 1 2 1 1

2 4 4 4 2

m m m m m m m
m

   − − + + + +
+ = + = =   
   

 

 

Therefore, the result follows. 

 

Example: 7, 
27 1

24
2

 −
= 

 
,

27 1
25

2

 +
=  
 

 yields 2 2 27 24 49 576 625 25+ = + = =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we order Pythagorean Triples from smallest to largest elements, it then follows that every odd 

integer is (can be) the smallest element of a Pythagorean Triple. There are Pythagorean triples of 

all even integers, for example 6,8,10, but no power of 2 can be smallest element of a 

Pythagorean Triple. 
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Euler’s Identity 

1 0ie  + =  

 

Ripples from tossed stones, snow-moon’s ring,  

gray eyes’ irides, gold leopard’s bane,  

sun’s bright halo, heavy crowns of kings,  

kurgans of Scythians scattered across cold plains.  

From one around to one, each circle owns  

a ghostly heart within a complex plane,  

forged like Achilles’ burnished shield,  

destroyed with flashing tracks of weapons drawn  

in clash of purpose. Blood-soaked battlefields 

preserve sublime geometry unrevealed.  

Real lives never curl back into the womb.  

 

First quarter moon, rainbows, mountain domes,  

courses of sun, stars across the sky,  

spear’s arc traveling towards crimson home,  

lids shadowing an archer’s piercing eyes.  

Half circles rise and fall from leaden ground  

to ground, true axis for the maps of lives.  

Wild Xanthos and Balios, under iron arm  

compelled to follow radians in a turn,  

pull Hector’s broken body past the new-filled urn.  

The root of death always comes too soon;  

e to the i π equals negative one. 

     -- E R Lutken (3: A Taos Press © 2021) 

 

“e to the i π equals negative one.” 
 

0

1

1

i

ie

e 



= −

+ =
 

 

Revisiting the constant e 
 

In Phaeton’s Ride the constant e was introduced as the sum of the infinite series  

 

0

1 1 1 1 1
1 ... 2.718281828...

1! 2! 3! 4! !k

e
k



=

= + + + + + =   

 

The function 
2 3 4

0

1 ...
2! 3! 4! !

k
x

k

x x x x
e x

k



=

= + + + + + =  was introduced as the exponential function which 

increased rapidly toward +∞ as x→ , that is lim x

x
e

→
= +while 

xe approached 0 asymptotically as 

x→− , that is lim 0x

x
e

→−
= . And of course, 

xe  equals 1 for 0x = . Thus, exponential growth and decay 

are modeled by the function ( ) xf x e= . 
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However, it is also interesting that the constant e has a close relationship with four other famous constants 

in mathematics, as expressed in Euler’s Identity.  

 

Euler’s Identity - The Most Beautiful Equation in Mathematics 
 

Euler’s Identity, 1 0ie  + = combines in one equation five important numbers in mathematics: 

 

2.718281828...e  , the base of the exponential function 
xe  

 

i, the square root of minus 1: 1i = −  

 

π, the ratio of the circumference of a circle to its diameter: 
circumfere

rdia

nce

mete
 =  

 

1, the multiplicative identity: 1 1a a a =  =  

 

0, the additive identity: 0 0a a a+ = + =  

 

Demonstrating (Proving) the Connection 
 

Recall that function 
xe has an infinite series representation … 

 
2 3 4

0

1 ... ...
! 2! 3! 4! !

k k
x

k

x x x x x
e x

k k



=

= = + + + + + + +  

which if you differentiate it (term by term) yields back 
xe (recall ( ) 1n nd

x n x
dx

−=  for 0n  ) 

 

( )
2 3 4 2 3 4

0

1 ... ... 0 1 ... ...
! 2! 3! 4! ! 2! 3! 4! !

k k k
x x

k

d d x d x x x x x x x x
e x x e

dx dx k dx k k



=

   
= = + + + + + + + = + + + + + + + + =   

   
  

 

That is, 
xe is the unique function which is its own derivative! Because of this unique property, among 

others, 
xe is a very important and useful function! 

  

Now when we evaluate 
xe  at i x where 1i = −  

( ) ( )2 3 4

0

1 ... ...
! 2! 3! 4! !

k k

ix

k

ix i xx i x x
e i x

k k



=


= = +  − − + + + +  

 

the infinite series can be partitioned into two series, one with real terms (even powers of x), the other with 

imaginary terms (odd powers of x). 

 

( )
( )

( )
( )

( )
( )

( )
( )

2 2 4 6 2

0

2 1 3 5 7 2 1

0

1 1 .... 1 ..
2 ! 2! 4! 6! 2 !

1 ... 1 ...
2 1 ! 3! 5! 7! 2 1 !

k k
k k

k

k k
k k

k

x x x x x

k k

x x x x x
i x i i i i i

k k



=

+ +

=

= − = − + − + + − +

+ − =  −  +  −  + + − +
+ +




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Now like 
xe , the trig function sin(x) and cos(x) also have power series expansions (called Taylor Series 

expansions); that is 

( ) ( )
( )

3 5 7 2 1

sin ... 1 ..
3! 5! 7! 2 1 !

k
kx x x x

x x
k

+

= − + − + + − +
+

 

and  

( ) ( )
( )

2 4 6 2

cos 1 ... 1 ..
2! 4! 6! 2 !

k
kx x x x

x
k

= − + − + + − +  

But looking back at the real and imaginary parts of the series expansion for 
ixe given above, the real part 

is the same as the series for ( ) ( )
( )

2

0

cos 1
2 !

k
k

k

x
x

k



=

= − and the imaginary part is i times the series for 

( ) ( )
( )

2 1

0

sin 1
2 1 !

k
k

k

x
i x i

k

+

=

 = −
+

 . In other words … 

( ) ( )cos sinixe x i x= +   

 

So the trig functions ( )sin x and ( )cos x are connected to the exponential function 
ixe , all three of which 

can be expressed as polynomial-like infinite series – a result due to Leonard Euler (1707 – 1783).  

 

Since ( )cos 1 = − and ( )sin 0 = it follows that ( ) ( )cos sin 1 0 1ie i i  = + = +  = − . Therefore  

1 0ie  + =  

 

1i = − , ie  , and the Geometry of Complex Numbers 
 

Recall that a complex number is of the form a bi+ where a and b are real numbers, for example 3 2i+ .  

It wasn’t until the 17th and 18th centuries that mathematicians accepted complex numbers as being 

numbers; that they obeyed all the algebraic laws of numbers (or as I like to say they “played well with 

other numbers”). So if you add, subtract, multiply, divide, exponentiate or take a root of a complex 

number, the result is a complex number: they are algebraically closed . (Recall that 1−  is not called a 

“real” number although to call it imaginary is somewhat of a misnomer). 

Addition and subtraction of complex numbers is straightforward: you add or subtract the real parts and the 

imaginary parts separately: ( ) ( ) ( )3 2 1 2 3i i i+ + − + = + .  

Multiplication uses the FOIL (First, Outside, Inside, Last) method that most of us learned in high school 

algebra.  ( ) ( ) 23 2 1 3 3 2 2 5i i i i i i+  − + = − + + − + = − +  (Remember 
2 1i = − .) 

Unfortunately, unlike real numbers,  complex numbers are not well ordered. That is given two complex 

numbers 3 2i+ and 1 i− + neither3 2 1i i+  − + nor  3 2 1i i+  − +  make sense. However if you 

multiply any complex number a bi+ by its complex conjugate a bi− you get the positive sum 
2 2a b+

We define the magnitude of a complex number 2 2a bi a b+ = +  so we can in a sense order complex 

number by their magnitude although two different complex numbers can have the same magnitude.   
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Division of complex numbers is done my multiplying numerator and denominator by the complex 

conjugate of the denominator. So to divide 3+2i by -1+i …  

3 2 3 2 1 1 5

1 1 1 2

i i i i

i i i

+ + − − − −  
= =  

− + − + − −  
 

The Complex Plane 

 Just as the real number line is used 

to represent real numbers, a two-

dimensional complex plane can be 

used to represent complex numbers 

where the imaginary axis is erected 

at right angles to the real axis. There 

is a natural one to one 

correspondence between points in 

the complex plane and complex 

numbers of the form a bi+ where a 

is the distance along the horizontal 

real axis and b is the distance along 

the vertical imaginary axis. Since 

magnitude a bi+  equals 

2 2a b+ , by the Pythagorean 

distance formula, the magnitude of 

a bi+ , a bi+  is the distance from 

the origin to the point a bi+ . 

  

a+bi 

b 

a 

| a+bi |   
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The Geometry of Addition & Subtraction – Parallelogram Rules 

There is a simple geometric 

description of addition and 

subtraction. If you treat a 

complex number a bi+ like a 

vector (or arrow) whose tail is 

the at the origin and whose 

head is at the point a bi+ (so 

the magnitude is the length of 

arrow), then the addition of 

two complex numbers can be 

seen as placing the tail of one 

vector at the head of the other 

with the resulting arrow being 

the sum.  

For example (3+2i) + (1+3i) = 

4+5i 

As you can see, the two 

arrows form two sides of a parallelogram – hence the parallelogram laws.  

To subtract reverse the subtractor (subtrahend) arrow and place its head at the head of the minuend arrow. 

That is  (3+2i ) – (1+3i) = -2 - i. The resulting difference arrow is parallel to the other diagonal of the 

addition parallelogram.  

The Polar Form for Complex Numbers: (cos sin ) iz a bi r i r e  = + =  + =   

If θ is the angle between the 

ray from the origin to the point 

z a bi= + and the positive real 

axis, then right triangle 

trigonometry shows that 

cos( )a r = and sin( )b r = . 

Putting this together obtains 

 cos sin

i

a bi

r

e

r i

r 

 

+ =

 +



  =  

where 

2 2r z a bi a b= = + = +  is 

the magnitude or modulus of z 

and θ is called the angle or 

argument of z. This is the 

polar form of a complex 

number. 

4+5i 

3+2i 

1+3i 

-2+-i 

a+bi 

b = r sin θ 

a = r cos θ 

| a+bi | = r   

θ 
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That is to say   is the angle whose tangent is 
b

a
 or 

1tan
b

a
 −  
=  

 
.   Thus, z can be expressed as 

 cos sin (cos i )s n iz a bi r r i ir er   = + =  +    = += . 

Using our knowledge of sines and cosines for certain angles we can convert between rectangular and 

polar representations. For example 

42 2 8 cos sin 8
4 4

i

i i e


   
+ = + =  

 
   where the argument (angle) of 2 2i+ is 

4


 and the magnitude 

is 2 2 .  

31 3 2 cos sin 2
3 3

i

i i e


   
+ = + =  

 
 where the argument (angle) of 1 3i+  is 

3


 and the magnitude is 

2 

Using the polar form for complex numbers multiplication is 

7

34 128 2 2 8
ii i

e e e
 
   

   =   
   

; that is 

geometrically speaking, multiplication of two complex numbers is multiplying their magnitudes and 

rotating by the sum of their angles. In particular, 

7

12
i

e




is a rotation of the unit vector counter-clockwise 

by an angle of 
7

12
 radians (105 degrees) .   

Thus 
ie 

is a rotation of the unit vector by π radians or 180 degrees ending up at -1. So  

1 0ie  + =  

This geometry of complex numbers makes for some interesting effects as will be seen in Augury in Sand. 
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1,729 
 

From faintly oscillating background fields 

of ancient tides rocking through generations, 

emerged a wave of unpremeditated energy 

welling from crowds flooding in sacred migrations,  

past scattered promontories in uneasy seas.  

 

Rare genius, a limiting case of the breather solution  

rose up in a flow of exquisite intensity,  

eventually noticed by the West at a quick turn  

then mad dash to comprehend the mystical singularity,  

Peregrine Soliton of one sweeping mind.  

 

Oceans of numbers rippling over this brain  

aware of the flash at the surface of each dimpled wave:  

seven times thirteen times nineteen,  

smallest sum of 2 positive cubes in 2 different ways,  

1729, a glint gracing the seascape vision of Ramanujan. 
       -- E R Lutken (3: A Taos Press © 2021) 

 

Ramanujan - December 22, 1887- April 26, 1920)   
 

Srinivasa Aiyangar Ramanujan was perhaps India’s most famous 

mathematician. With very limited formal mathematical education he 

made substantial contributions to the analytical theory of numbers 

working on elliptic functions, continued fractions, and infinite series. He 

came to the attention of the well-known mathematician G.H. Hardy 

(Cambridge University) who arranged for Ramanujan to be brought to 

Cambridge in 1914 thus beginning an extraordinary though difficult 

collaboration as Ramanujan was plagued by poor health and ill-suited to 

the colder English climate. While mathematically brilliant, Ramanujan 

had difficulties due to his lack of formal mathematical education. Having 

key mathematical insights is not enough, one must provide a rigorous 

proof. 

 

Ramanujan returned in India in 1919 where due to his poor health he died 

the following year at age 33 – the tragedy of genius.  

 

   

1729 – The Taxi-Cab Number 
 

The story of the 1729 as the Taxicab numbers as told by Hardy goes like this:  

 

“I remember once going to see him [Ramanujan] when he was lying ill at Putney. I had ridden in taxi-cab 

No. 1729, and remarked that the number seemed to be rather a dull one, and that I hoped it was not an 

unfavourable omen. "No," he replied, "it is a very interesting number; it is the smallest number 

expressible as the sum of two [positive] cubes in two different ways."  

 

 

https://en.wikipedia.org/wiki/1729_(number)
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1729 7 13 19=   - 1729 is composite (not prime).  

1729 is a Carmichael Number (see Prime Number Song) 

1729 is the smallest number which is the sum of two cubes two different ways. 

 
3 3

3 3

1729 9 10 729 1000

1729 1 12 1 1728

= + = +

= + = +
 

 

“seven times thirteen times nineteen,  

smallest sum of 2 positive cubes in 2 different ways,  

1729, a glint gracing the seascape vision of Ramanujan” 

 

Ramanujan and pi 
 

In 1914 Ramanujan produced the following remarkable equation for 1/π.  

 

( )

( )
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Ramanujan’s formula is truly remarkable in that unlike previous formulas used to determine pi as 

presented in the previous essay on π which were obtained using geometric properties of circles 

(Archimedes), or the integration of the area under a semi-circle (Newton) or power series expansions of 

inverse trigonometric functions (Gregory, Leibniz, Nilakantha), there seems to be no obvious connection 

between Ramanujan’s  formula and the ratio of the circumference of a circle divided by its diameter.       

 

Computing just the first three terms from the above equation yields 1/π accurate to 16 digits (and π to 15 

digits); that is for n = 2   

 

1
0.3183098861837907 


= and  3.141592653589793 = 3 

 

Each additional term adds 8 more digits of accuracy to 1/π. As mentioned in the previous discussion of π, 

the arctangent-based equations used to determine π are ultimately too slow. Ramanujan’s work opened up 

a new approach to the determination of π based on faster converging recursive formulas.  

 

Ramanujan left notebooks containing formulas and equations which today are still being studied by 

mathematicians in attempts to understand and to provide proofs for his work. 

 

“Peregrine Soliton of one sweeping mind” 
 

 

 

 

  

 
3 The values for 1/π and π were obtained using a Python program where floating point numbers (32 bits) are 
restricted to 16 decimal digits.   
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Augury in Sand 
To those poor souls who dwell in night… 

– William Blake 

 

I came halfway around the world  

to this beach of ash-gray basalt grains,  

Hawai’i, surrounded by an infinity  

of ocean, after I got news second-hand  

she’d died. Seemed like an eternity  

on the airplane, five stagnant hours.  

 

Scratched at a crossword for two hours,  

gave up, stared at the bloated world  

of clouds, cheap window on eternity.  

Ideas of an afterlife go against the grain  

for me, too much dissonance at hand  

to imagine angel-winged infinity.  

 

Fractals were our chosen drafts of infinity,  

Mandelbrot and Julia sets we’d peruse for hours,  

watching mesmeric spokes form under hand:  

seahorse tails, double spirals, island worlds,  

crowns shrinking smaller than dust grains,  

wild acid trips we mapped into eternity.  

 

A slippery concept, Eternity  

and her sister in space, Infinity,  

positioning us on their respective lines, grains  

in the middle of Here, at the Now hour,  

where I pace empty shores of a dull world.  

Before she died, we had everything in hand,  

 

but on this beach, dreams drip from my hands.  

Why should this be the now of eternity?  

Why not some other speck of the moving world?  

Plenty of room, stretching to infinity.  

Pick a place and an hour, any other hour,  

where sets of memories scatter like grain.  

 

No grand recursive frills are worth one grain.  

Nothing rewrites the flat, brutal history on hand.  

I watch waves break hour to hour to hour,  

iterations lapping at the lacework of eternity,  

washing away all traces of diagrammed infinity,  

while her simple, endless absence is seared into my world.  

 

Eternity crawls by every hour,  

infinity strikes hard at hand.  

The world is nothing but a sand grain. 

     --E R Lutken (3: A Taos Press © 2021) 
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Mandelbrot and Julia Sets 
 

“Fractal were our chosen drafts of infinity, 

Mandelbrot and Julia set we’d peruse for hours …” 

 

Endless hours can be spent using a computer exploring Mandelbrot and Julia sets – perhaps one of most 

complicated mathematical objects known.  

 

 

The Mandelbrot Set 

lives in the complex 

plane – generated by 

the simple recursive 

equation 2

1n nz z c+ = +  

where z and c are 

complex numbers 

  

Fix c and iterate 
2

1n nz z c+ = + starting 

with 0 0 0z i= +  If nz

does not escape to 

infinity, then c (in the 

c complex plane) is in 

the Mandelbrot set. 

Color that point black. 

It’s helpful at this 

point to recall the 

geometry of complex 

numbers and in 

particular, the effect 

of multiplication of 

complex numbers  (see Euler’s Identity). If you multiply two complex numbers, say a b , the effect is to 

stretch a (the arrow vector from the origin to the point a in the complex plane) by the magnitude of vector  

b and to rotate the resulting vector around the origin (by the sum of the two angles the vectors make with 

the positive real axis) . This can make for some very interesting results which is why the Mandelbrot and 

Julia sets, when graphed, are so interesting.  

 

Generating the Mandelbrot Set 
 

The above picture of the Mandelbrot Set was generated using an escape algorithm.  Pick a complex value 

c in the complex plane. Set 0 0 0z i= +  and iterate the recursive equation 2

1n nz z c+ = + . After a sufficient 

number of iterations (say about 100) if 4.0nz  , it’s probably the case that nz will not escape and 

therefore c is in the Mandelbrot Set. Color point c black. 

 

If for some n 4.0nz  then nz will escape so c is not in the Mandelbrot Set. The color we assign to c 

depends on how fast nz is escaping. For example, if 10n ( nz is escaping fast) we might color the  point  

c red. If 10 20n  we might color  c orange. If 20 30n  color c yellow, etc.  So the colors surrounding 
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the black Mandelbrot Set indicate how fast points are escaping.  The colors also provide a nice aura 

surrounding the Mandelbrot Set. 

 

The Geography of the Mandelbrot Set 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The overall structure of the Mandelbrot Set is a central cardioid surrounded by a number of bays. The real 

axis bisects the Mandelbrot Set from -2.0 on the left to 0.5 on the right with the Mandelbrot Set being 

symmetric with respect to the real axis. Off of the bays are delicate antenna-like structures. The 

Mandelbrot set is connected in that given any two points in the set there is a path completely within the 

set connecting the two points.  

 

The Mandelbrot Set exhibits a high degree of symmetry. Points in the main cardioid have period 1; that is 

if c is any point in the central cardioid, the iteration 2

1n nz z c+ = + will converge to a point in the main 

cardioid. The large bay to the west, has period 2. If an initial c is chosen from the western bay, the 

iteration 2

1n nz z c+ = +  will eventually orbit between two values. The northern and southern bays have 

period 3. Moving clockwise from the northern bay, the next largest north-east bay has period 4 (as does 

its twin to the south). The next largest has bay period 5, then period 6 and so on.  

  

However, if you start at the northern bay and move counterclockwise, the next largest bay has period 5. 

And the next one period 7 etc.  

 

Concentrating on the western bay, its own western bay has period 4 and the next largest bay to the north 

(and south) has period 6. Periods are doubled.  

 

 

Period 5 
Period 3 

Period 2 

Period 5 

Period 4 

Period 1 

5 
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Exploring the Western Bay 
 

On the left a close-up of the western bay (period 2) centered at -1.0+0.0i; on the right is a close-up of the 

western-western bay (period 4) centered at -1.3125+0.0i. Note the small Mandelbrot Set centered along 

the real axis to the left off of the western-western bay and the antenna-like structures curling off the 

individual bays. The small back dots within the antennae like those on the real axis are smaller 

Mandelbrot Set like copies – satellites.  

 

 

To the left is a close up of the Mandelbrot Set island 

centered on the real axis mentioned above to the left 

of the western-western bay at coordinates -

1.48095705+0.0i.  

 

As we zoom-in we see more colors generated by the 

escaping values near the border of the Mandelbrot 

Set. Colors further up the spectrum indicate that 

closer a c value is to the Mandelbrot Set, the longer 

it takes to escape.  

 

This cardioid has period 6 and its western bay has 

period 12. Its northern and southern bays are period 

18. The western-western bay has period 24!  

 

 

 

 

 

“watching mesmeric spokes form under hand:  

seahorse tails, double spirals, island worlds,  

crowns shrinking smaller than dust grains,  

wild acid trips we mapped into eternity. “ 
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A tour of the Northern Bay area 
 

 

From the period 3 northern bay centered at -0.125+0.75i (upper left) we have a better view of the 

antenna-like filaments of the Mandelbrot Set. Zooming in to the where the antenna at coordinates  

-0.101562504+0.96093753i splits into two filaments (upper right) we see smaller satellite Mandelbrot 

Sets along each antenna. The one on the upper left antenna is most pronounced. 

 

 

We zoom in and display the satellite Mandelbrot Set 

from the upper left centered at coordinates  

-0.15722656+1.03320312i. Again, the colors in the 

upper spectrum indicate the escape speed of points.   
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Julia Sets 
 

The Julia Set (in the z-complex-plane) is obtained using the same 2

n nz z c= + recurrence relation except 

we fix c and vary the initial 0z  coloring the initial point 0z  black if nz  does not escape to infinity. If nz

does escape to infinity, we color 0z the same way we colored the Mandelbrot Set demonstrating the speed 

for escaping to infinity. The same algorithm is used – the only difference is that we reverse the roles of c 

and 0z . 

 

From the Mandelbrot Set on the left we view the corresponding Julia Set. The orbit of the z values for this 

Julia set is 6 meaning as we iterate 2

1n nz z c+ = + , the z values repeat after 6 iterations.  

 

 

In some sense the Mandelbrot Set is like a “dictionary” for Julia Sets since every point in the Mandelbrot 

Set is the fixed-point c for the Julia Set iteration 2

n nz z c= +  where all points z that do not escape to 

infinity make up the Julia Set.  

 

The Fascination of Mandelbrot and Julia Sets 
 

The poem mentions the fascination of watching Mandelbrot and Julia sets evolve, indeed come to life  on 

a computer screen.  

Fractals were our chosen drafts of infinity,  

Mandelbrot and Julia sets we’d peruse for hours,  

watching mesmeric spokes form under hand:  

seahorse tails, double spirals, island worlds,  

crowns shrinking smaller than dust grains,  

wild acid trips we mapped into eternity.  

 

A slippery concept, Eternity  

and her sister in space, Infinity,  
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Oversimplification 
 

Poincaré Conjecture: Every simply connected, closed 3-dimensional manifold  

                                      is homeomorphic to the 3-dimensional sphere.  

 

Slippery lassos try to grab forms  

in a confusion of 4-D space.  

Time and again, nothing to grip,  

the snares slide off the backs of stubborn  

balloons, billiard balls, planets, protons.  

Any figure that acts like a sphere  

must be a sphere.  

Why acres of dusty blackboards, years,  

miles of penciled chicken scrawl, a bevy of brainy folks  

dreaming up patterns of flows and surgeries  

to snag a proof?  

 

Goldbach’s Conjecture: Every even integer greater than two  

                                          can be expressed as the sum of two primes.  

 

Burning brands of computer circuits  

spinning for days on end  

demonstrate this prime directive holds  

for all integers less than 4 X 1018  

and probably soon a lot more.  

But, in spite of number pyramids,  

heuristic estimates, comet graphs,  

reams of paper, smoky clouds of chalk,  

the serious cogitations of clever folks  

smoldering for near 300 years,  

no proof yet.  

 

Proposed Conjecture: Proofs of simple conjectures are not simple.  

 

The journey begins per una selva oscura 

 

-- E R Lutken (3: A Taos Press © 2021) 
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Henri Poincaré (1854 – 1912) and his Conjecture 
 

 

The French mathematician, Henri Poincaré, is often called the 

last universalist in mathematics due to his wide-ranging 

mathematical and scientific interests and results. His famous 

conjecture is from the area of topology which deals with asking 

the question of what geometric properties are preserved under 

continuous transformations. In other words, if you’re allowed to 

twist, bend, stretch, push and/or pull on a geometrical object, as 

long as you don’t cut it or put a hole in it, what properties are 

preserved? Topologically a triangle, a circle and a square are 

equivalent; they are all closed loops. Geometrically they are 

different.  

 

The Poincaré Conjecture was solved in 2002-03 by Grigori 

Perelman based on the work by Richard Hamilton, another 

mathematician. It was one of the seven Millennial Problems in 

mathematics, problems selected by the Clay Mathematical Institute in 2000 as a way to direct and 

encourage mathematical research in the 21st century. Solutions carry a $1,000.000 reward. In 2010 

Perelman was awarded the prize but he never accepted it; that’s another story. 

 

To understand the Poincaré Conjecture (it’s highly technical), first 

consider a two dimensional disk of radius 1 centered at the  origin and 

the circle which is its boundary or edge. The circle is a 1-sphere, a 1-

dimensional line bent back on itself. In fact, locally it looks like a line if 

curved somewhat. Algebraically we can describe this 1-sphere as the set 

  

( ) 2 2, | 1x y x y+ =  

 

… that is the set of all ordered pairs of numbers such that if you squared 

each number, they would sum to 1. If you were a tiny insect on the 1-

sphere you’d think you were walking along a line. Locally it looks like a standard Euclidean straight line. 

 

Now consider a three-dimensional sphere or ball of radius 1 centered at the origin and the surface of the 

ball. The surface is a 2-sphere; locally it looks like a two-dimensional plane (like the surface of the earth) 

and algebraically we can describe this 2-sphere as 

 

( ) 2 2 2, , | 1x y z x y z+ + =  

 

… that is, the set of all ordered triples of numbers such that if you squared each number, they would sum 

to 1. Again, if you were a small creature walking on the surface of the 2-sphere it would look like you’re 

on a Euclidean plane.  

 

So, a 3-sphere is the surface of four-dimensional ball of radius 1 centered at the origin. The surface of a 3-

sphere looks like our normal three-dimensional space (curved in a 4th dimension you cannot detect?) so if 

you started walking in a straight line, you would eventually return to your starting point (there is some 

thought that our universe, which is finite, is like a 3-sphere). Algebraically  
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( ) 2 2 2 2, , , | 1w x y z w x y z+ + + =  

 

It’s hard to visualize though mathematically easy to describe. 

 

We note that any n-sphere can have a different radius and can be centered at different a point in space; all 

n-spheres are topologically equivalent.  

 

We can best understand the Poincaré Conjecture by looking at a 2-sphere example. 

 

You can take a 2-sphere (surface of a ball) and twist and pull it to deform it into other shapes just as long 

as you don’t cut it or “break the surface”. This is called a homeomorphic transformation (technically a 

continuous one-to-one transformation with a continuous inverse which preserves all topological 

properties). For example, starting with a 2-sphere you could squeeze it into a cylinder then indent the top 

and push down transforming it into a cup with no handle to hold water. So topologically the 2-

dimensional sphere and a handle-less cup are the same.  

 

However, you cannot homomorphically transform a 2-sphere into a 

donut (torus) which has a hole through it.  One way to see this is any 

closed loop like a circle on the surface of a sphere can be squeezed 

down to a single point whereas a circle around the hole in the torus (in 

red and purple) cannot be squeezed down to a single point. That 

particular topological property is NOT preserved by any homeomorphic 

transformation.   

 

On the other hand, a torus (donut with a hole) can be deformed 

topologically into a cup with a handle (the handle from the donut hole) 

which brings to mind the old joke that a topologist is a mathematician 

who cannot tell the difference between his donut and his coffee cup. 

 

If every closed loop can be squeezed down to a point, then the object is 

simply-connected; therefore the torus is NOT simply connected.   

 

So in the 3-sphere case the Poincaré  Conjecture states that being 

simply-connect is all that’s required for a closed (think bounded) 3-

dimensional manifold (again think a three- dimensional surface or space) to be topologically equivalent 

(i.e. invariant under a  homeomorphic transformation) to a 3-sphere?  

 

“Slippery lassos try to grab forms  

in a confusion of 4-D space.  

Time and again, nothing to grip,  

the snares slide off the backs of stubborn  

balloons, billiard balls, planets, protons.  

Any figure that acts like a sphere  

must be a sphere.”  

 

“Slippery lassos try to grab forms” is like a closed loop; “nothing to grip – the snares slide off the backs 

of stubborn ballons” - that can be contracted catch nothing. 

  

Poincaré Conjecture: Every simply connected, closed 3-dimensional manifold  

                                      is homeomorphic to the 3-dimensional sphere.  

By Krishnavedala - Own work, CC0, 
https://commons.wikimedia.org/w/i
ndex.php?curid=32176358 
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Christian Goldbach (1690  - 1764) and his Conjecture 
 

In 1752 letter written to Leonard Euler (1707 – 1783), Christian Goldbach posed the conjecture that every 

even integer greater than or equal to 4 can be written as the sum of two primes. (See Prime Syllable 

Song) For example, 12 = 5 + 7, 16 = 3 + 13 etc. It is still unproven although it’s been checked by 

computer for integer values up to  
184 10 .  

 

“Burning brands of computer circuits  

spinning for days on end  

demonstrate this prime directive holds  

for all integers less than 4 X 1018 “ 

 

What is interesting is that Goldbach’s Conjecture is easy to state and understand (unlike the Poincaré 

Conjecture) yet the conjecture defies proof.  

 

“smoldering for near 300 years,  

no proof yet.”  

 

In terms of Godel’s Incompleteness Theorem (which states that for certain formally consistent systems of 

mathematics in which a certain amount of arithmetic (e.g. addition and multiplication)  can be carried out, 

there are mathematical statements which are true but cannot be proved), it just might be that Goldbach’s 

Conjecture is a rare example of a statement in mathematics which is true but can’t be proved.  

 

una selva oscura – “in a dark forest” 
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The Truel 
Luc Bat for Sergio Leone 

 

Three pairs of restless eyes  

read faces, analyze grim odds,  

a tic or subtle nod,  

cracks within fixed facades, the fear  

concealed in knitted sneers.  

Thumbs tucked in bandoliers drop back,  

touch hammers’ tongues, enact  

a lightning sequence, track pistols’  

arcs, feather-triggers’ pulls,  

trivial options, bullets loosed,  

permutations induced,  

then mark the box of useless death.  

Even played close to chest,  

probabilistic bests just keys.  

Nothing can guarantee  

a gunman lives to see new skies 

    -- E R Lutken (3: A Taos Press © 2021) 

 

 

The Good, the Bad and the Ugly 

Mathematics of Modeling a Truel 
 

The climax in the 1966 movie, “The Good, the Bad and the Ugly” is a three-way duel (or truel) between 

Blondie  - “The Good” played by Clint Eastwood, Angle Eyes - “The Bad” played by Lee Van Cleef and 

Tuco – “The Ugly” played by Eli Wallach which is the inspiration for this essay on computing the 

probable outcomes for a truel given the independent probabilities
,i jp the probability that gunfighter i hits 

(and kills?) gunfighter j. In what follows, to simplify the equations to be derived let 
, ,1 i ji jq p= − be the 

corresponding probability that gunfighter i misses gunfighter j. Probabilities are values between 0 and 1 

where for example, the probability of tossing a head with a fair coin is 0.5.  

Since one outcome of a truel may result in only one gunfighter begin initially killed (to be continued as a 

duel?), we begin by modeling the simpler case for a duel. The mathematical techniques presented for the 

dual will be used when discussing the more complicated cases for a truel.  

Modeling a Duel 
 

Begin by supposing Gunfighter #1 has probability 
1,2p of hitting and killing (and probability 

( )21,2 1,1 pq = −  of missing) Gunfighter #2, and Gunfighter #2 has probability 
2,1p of hitting and killing 

(and probability ( )12,1 2,1 pq = −  of missing) Gunfighter #1 . All 
,i jp probabilities are mutually 

independent (meaning the outcome one event should not affect the outcome of another).  

 

There are two outcomes for Gunfighter #1 and two outcomes for Gunfighter #2 yielding four possible 

outcomes for a duel with their respective probabilities. 
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 1. both are hit: 
1,2 2,1p p  

 2. #1 wins: 11,2 2,p q   

 3. #2 wins: 11,2 2,q p  

 4. both survive 1,2 2,1q q  

 

Note that the probabilities for the four outcomes sum to 1, as they should. Note that the combined 

probability of two independent events is obtained by multiplication.  

 

Again! - To the limit 
 

If both survive (the last of the four outcomes) there is a follow on second round again with four possible 

2nd round outcomes, the outcome probabilities now being respectively … 

 

 4.1 both are hit: ( ) ,1,2 2 2,,1 1 2 1q pq p    

  4.2 #1 wins ( ) ,1,2 2,1 2,11 2q pq q    

4.3 #2 wins ( )1,2 2,1 1, 2 12 ,q q q p    

 4.3 both survive ( ) ( ) ( )
2

1,2 2,1 1,2 2,1 1,2 2,1q q q q q q   =   

 

These four 2nd round probabilities occur when a miss on the first round ( )1,2 2,1q q is followed by one of 

the four possible outcomes. Each outcome probability is obtained by multiplication: one outcome follows 

the other. 

 

So, after two rounds, EITHER both are hit on the 1st round or both are hit on the 2nd round OR Gunfighter 

#2 is hit on the 1st round or hit on the 2nd round (and Gunfighter #1 is missed) OR Gunfighter #1 is hit on 

the first round or hit on the second round (and Gunfighter #2 is missed) OR both are missed on the 1st and 

2nd round.  That is …   

 

 1.  ( ) ( ) ( )1,2 2,1 1,1 2 2,11,2 2,p p pq q p +     - both are hit  

 2. ( ) ( ) ( )11,2 1,22,1 1,2 2, 2,1p q pq q q +     - #1 wins   

3. ( ) ( ) ( )1,2 1,2 2,1 1,22,1 2,1q p q q q p +      - #2 wins  

4. ( )
2

1,2 2,1q q - both survive two rounds 

 

Continuing on in this manner, if both survive the 2nd round and move on to a 3rd , 4th ,…, nth etc. round we 

see probability expressions (after n rounds) like … 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1,2 2,1 1,2 2,1 2 ,1,2 2,1 1,2 2,1 1,2 ,1 1,2 2,11,2 2 1...
n

p pq q qp p p qp pq p q +    +    + +    =  

( ) ( )1,2 2,1

1

1,2 2,1

0

n
k

k

q q p p
−

=

 
   

 
  
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Thus, as n increases without bound the limit of the (geometric) series ( )1,2 2,1

0 1,2 2,1

1
lim

1

n
k

n
k

q q
q q→

=

 =
− 



since 
1,2 2,1 1q q  .  

 

Therefore, in the limit the probabilities for the first three outcomes (both are hit, Gunfighter #1 win, 

Gunfighter #2 wins) are given by  

n.1:  both are hit: ( ) ( )1,2 2,

0

1,2 2,1 1.
n

k

k

p qp q
=

   
( )

1,2 1

1,

2

2 2,1

,1 q

p p

q




− 
 

n.2: #1 wins:  ( ) ( )2,1 1,2 2,

0

1,2 1.
n

k

k

p q q q
=

 
2,1

1,2 2

1,2

,11 q

p q

q




− 
 

n.3: #2 wins:  ( ) ( )1,2 1,2 2,

0

2,1 1.
n

k

k

q qp q
=

 
1,2

1,2 2

2,1

,11

q

q

p

q




− 
 

 

while the probability of both surviving is given by   

 

n.4: both survive ( )1,2 2,1

k

q q 0  since 1,2 2,1q q being less than 1, the limit goes to 0.  

 

Some Examples 

 
To get a feel for the above Dual calculations suppose both gunfighters have a 50-50 chance of hitting the 

other; that is 
1,2 0.5p = (so 

21,2 1,1.0 0.5q p= − = ) and 
2,1 0,5p = (so 

12,1 2,1.0 0.5q p= − = ). Then 

plugging these numbers into the four outcome equations …. 

 

n.1 both are hit:   
( )

1,2 2,1

1,2 2,1 0.25 1

1 1 0.5 0.5 3

0 0

0

.5 .5

.75

p

q q

p 
= = =

−  − 
 

n.2 #1 wins:  
2,1

1,2 2,

1,

1

2 0.5 0.25 1

1 1 0.5 0.5 0.75 3

0.5p q

q q

 
= = =

−  − 
 

n.3 #2 wins:  
1,2

1,2 2,

1

1

2, 0.5 0.25 1

1 1 0.5 0.5 0.75 3

0.5q

q q

p 
= = =

−  − 
  

n.4 both survive:   0 probability   

 

In retrospect this result makes sense. 

 

 However, suppose Gunfighter #1 is slightly better than Gunfighter #2 – say Gunfighter #1 has probability  

1,2 0.6p =  ( 
21,2 1,1.0 0.4q p= − = ) while Gunfighter #2 has the same probability given above 

2,1 0,5p =

(so 
12,1 2,1.0 0.5q p= − = ). Then plugging these numbers into the four outcome equations …. 

 

n.1 both are hit:  
( )

2

1,2 2,1

1,2 ,1 3

0.6 0 0.3 3 1

1 1 0.4 0.5 0. 8

.

8

5

q q

p p 
= = = 

−  − 
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n.2 #1 wins: 
2,1

1 ,1

1,2

,2 2

0.5 0.3 3 1

1 1 0.4 0.5 0.8 8 3

0.6p q

q q

 
= = = 

−  − 
 

n.3 #2 wins: 
2

2,11,2

1,2 ,1

0.4 0.5 0.2 1 1

1 1 0.4 0.5 0.8 4 3

q

q

p

q

 
= = = 

−  − 
  

n.4 both survive:  0 probability  

 

So Gunfighter #1 has a slightly better chance of winning (
3 1

8 3
vs ), Gunfighter #2 has a slightly smaller 

chance of winning (
1 1

4 3
vs ) while the chance of both losing increases (

3 1

8 3
vs ).  

 

Modeling a Truel 

 
A truel which is more complicated can start in one of two possible configurations assuming of course all 

three gunfighters are unable to shoot at two targets at the same time.  

 

Without loss of generality, we can say either Gunfighter #1 shoots at Gunfighter #2 who shoots at 

Gunfighter #3 who shoots at Gunfighter #1 (a sort of round robin face off), or Gunfighter #1 and 

Gunfighter #2 face off in a dual and Gunfighter #3 shoots at either #1 or #2 (a dual plus one). 

 

However, unlike a duel where the only option is for the gunfighters to shoot at the other, in a truel the 

first round could either be a round robin or a duel plus one where any gunfighter shooting at any other 

gunfighter. Furthermore, if there are no casualties after the first round, the gunfighters could switch 

targets which might result in a different configuration of round robin or dual plus one. There are more 

variables (and probabilities) to deal with than with a dual.  

  

Coding a Monte-Carlo based Truel? 

The mathematical approach used above to model a dual will not work to model a truel in that one needs 

to factor in the probabilities of round robin and/or duel plus one face-offs (randomly?) occurring in an 

actual gunfight especially if early rounds resulted in no casualties.  Better is a Monte Carlo approach 

which would randomly allow each gunfighter to randomly select a target. First let’s consider how a Monte 

Carlo duel works.  

 

Monte Carlo Duel 

 
Programming a Monte Carlo duel uses the two probabilities 

1,2p and 
2,1p  along with a random number 

generator to simulates a duel. Outcomes are random but subject to the constraints imposed by the two 

probabilities 
1,2p and 

2,1p . If a simulation is executed many times and the results recorded (the more the 

better) it should approach what would actually happen and more or less agree with the non-Monte Carlo 

method covered above. Hence the number of rounds N to execute is also input to the simulation.  

 

For each round the random number generator is used to generate a random number between 0 and 1 for 

each gunfighter and if that numbers is less than or equal to the probability
,i jp a corresponding hit is 

recorded. A round continues until one or both gunfighters are eliminated and the running counts for no 

survivors, #1 wins, or #2 wins are incremented. (It is assumed that a round of gunfire continues until 
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someone is hit  which stops that round.) When the N rounds are completed, each running count is divided 

by N to yield the corresponding probabilities of no survivors, #1 hits, or #2 hits. Given a large enough 

initial  value for N, the resulting probabilities will be (should be) very close to the analytic mathematical 

results calculated above. No surprise there! 

 

To demonstrate this, here is the Python code to execute a Monte Carlo Duel. Comments explaining the 

code are in red. 

 
# Desc: Monte Carlo Simulation of a Duel 

 

from random import *  # access random number generator functions 

                      # random() generates a random value between 0.0 and 1.0   

def hit(p): 

# 

#   p is probablity of a hit 

# 

#   Returns True if random() <= p  - that is a hit! 

#   Otherwise returns False – a miss   

 

    return (random() < p) 

 

def main():   # main program code 

     

    print("\nMonte Carlo Duel\n") 

 

    # input probabilities of a hit and number of rounds to execute 

 

    p1 = eval(input("Input Gunfighter #1 probability of a hit: ")) 

    p2 = eval(input("Input Gunfighter #2 probability of a hit: ")) 

    N = eval(input("Input Total Number of Rounds (Trials): ")) 

 

    cnt0 = 0 # Count of both Gunfighters hit 

    cnt1 = 0 # Count of Gunfighter #1 wins 

    cnt2 = 0 # Count of Gunfighter #2 wins 

 

    RoundNumber = 0  # running count of number of completed rounds  

 

    while (RoundNumber < N): 

        shot1 = hit(p1)  # Gunfighter #1 shoots with probability p1 

        shot2 = hit(p2)  # Gunfighter #2 shoots with probability p2 

        if (shot1 and not shot2):  # Gunfighter #1 hits, #2 misses 

            cnt1 = cnt1 + 1        # increment Gunfighter #1 count 

            RoundNumber = RoundNumber + 1 # increment count of rounds 

        elif (not shot1 and shot2): # Gunfighter #1 misses, #2 hits    

            cnt2 = cnt2 + 1         # increment Gunfighter #2 count 

            RoundNumber = RoundNumber +1 # increment count of rounds 

        elif (shot1 and shot2): # both Gunfighters miss 

            cnt0 = cnt0 + 1         # increment count for both are hit 

            RoundNumber = RoundNumber + 1 # increment count of rounds 

    

    # Display Results nicely formatted 

   

    print("\nTotal Gunfighter #1 Wins = {0} : {1:5.2f}%".format(cnt1,cnt1/N*100)) 

    print("Total Gunfighter #2 Wins = {0} : {1:5.2f}%".format(cnt2,cnt2/N*100)) 

    print("No survivors = {0} : {1:5.2f}%".format(cnt0,cnt0/N*100)) 

       

main() 

  

Below we executed the program twice, the first time using the probabilities 
1,2 0.5p = for Gunfighter #1 

and 
2,1 0.5p = for Gunfighter #2. After 50,000 rounds the figures closely match the result obtained from 
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the previous mathematical calculations (as they should). For the second run we used probabilities  

1,2 0.6p = for Gunfighter #1, 
2,1 0.5p = for Gunfighter #2 and again for 50000 rounds. Again, the results 

closely match those obtained from mathematical calculations. Due to the built in use of a random number 

generator, there will always be some variation (which decreases as N, the number of rounds played 

increases).   

 

 
Monte Carlo Duel 

 

Input Gunfighter #1 probability of a hit: 0.5 

Input Gunfighter #2 probability of a hit: 0.5 

Input Total Number of Rounds (Trials): 50000 

 

Total Gunfighter #1 Wins = 16569 : 33.14% 

Total Gunfighter #2 Wins = 16743 : 33.49% 

No survivors = 16688 : 33.38% 

 

Monte Carlo Duel 

 

Input Gunfighter #1 probability of a hit: 0.6 

Input Gunfighter #2 probability of a hit: 0.5 

Input Total Number of Rounds (Trials): 50000 

 

Total Gunfighter #1 Wins = 18805 : 37.61% 

Total Gunfighter #2 Wins = 12454 : 24.91% 

No survivors = 18741 : 37.48% 

 

Monte Carlo Truel 
 

A Monto Carlo Truel is more complicated just as a truel is more complected. Here you have six 

probabilities 
,i jp for , 1,2,3i j = plus three other probabilities

2.3s ,
1,2s , and 

3,1s being the probabilities that 

gunfighter #1 chooses to shoot at gunfighter #2, gunfighter #2 chooses to shoot at gunfighter #3 and 

gunfighter #3 chooses to shoots at gunfighter #1 (with 
22,1 1,1 ss = − , 

33,2 2,1 ss = − , and 
11,3 3,1 ss = − being 

the complementary probabilities). Initial input values for a program are the nine probabilities plus N the 

number of rounds. When one gunfighter is eliminated the code for Monte Carlo duel can be used to 

decide the outcome which negates the need for the corresponding 
,i js probability. There are four possible 

outcomes with the final probable outcomes computed in the obvious way.  

 

See the Programming Appendix for a Python program that implements Monte Carlo Truel.  

A Brief History on the Origins of Monte Carlo Techniques 

The Monte Carlo method uses repeated random sampling to obtain numeric results (using computer 

generated pseudo-random numbers) when deterministic calculations are too complicated to provide an 

answer. The initial work was done by John von Neuman, Nicholas Metropolis, and Stanislaw Ulam in the 

late 40’s at the Los Alamos Lab to simulate and understand the process of neutron diffusion (in the 

process of a nuclear chain reaction).    

According to von Neuman and Ulam the idea originated from Ulam’s interest in random processes. To 

quote Ulam “The procedure is analogous to playing a series of solitaire cards games and is performed on 

a computing machine. It requires, among others, the use of random numbers with a given distribution.”    
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The name “Monte Carlo” was suggested by Metropolis referring to the Monte Carlo casino in Monaco 

where Ulam’s uncle would borrow money from relatives to gamble.      

Monte Carlo methods require the use of a random number generator to generate the many random values 

used which lead von Neumann to observe … 

“Anyone who considers arithmetical methods of producing random 

digits is, of courses, in a state of sin” – J. von Neumann 

… since computers are deterministic machines.    

More Monte Carlo - Monte Carlo Pi? 

Consider a circle of radius 1 centered at the 

origin of the xy-plane enclosed in a 2x2 square 

box (see diagram on right). Since the radius of 

the circle is 1, the area of the circle is  

2Area r = =  

and the area of the surrounding 2x2 square is 4.  

For a large integer n, randomly generate n (x,y) 

coordinate pairs such that 1 1x−   + and 

1 1y−   + counting number of (x,y) pairs (or 

points) that are in the circle; that is such that 

2 2 1x y+  .  If k is the number of  xy pairs in 

the circle, then 4
k

n
 is a rough estimate for the 

area of the circle; that is 4
k

Area
n

    

Therefore 4
k

n
   .  

  

(-1,1) (1,1) 

(-1,-1) (1,-1) 
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The Python program below implements a Monte Carlo simulation to generate pi. 

 

from random import * 

 

def main(): 

 

    print("\nMonte Carlo Pi\n")  

    n = eval(input("Enter number of rounds: ")) 

    k = 0  # count of points in circle 

  

    for i in range(n): 

        x = 2.0 * random() - 1.0 

        y = 2.0 * random() - 1.0 

        r = x*x + y*y  # is the point (x,y) in the circle? 

        if r <= 1.0: 

            k = k + 1 

 

    pi = (k/n)*4.0         

    print("\npi ~ {0:6.4f}\n".format(pi))         

 

main() 

 

A Sample Run 
Monte Carlo Pi 

 

Enter number of rounds: 100000 

 

pi ~ 3.1348 

 

Back to the Movie  

In the 1966 movie both Tuco and Blondie aim at Angel Eyes who is killed by Blondie  (a duel plus one); 

Tuco’s gun jams as he tries to shoot Angel Eyes. After being hit Angel Eyes tried to shoot Blondie but 

fails. Blondie does not engage Tuco.   
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Math History in a Few Bad Clerihews 

 

Brahmagupta  

Worth the hoopla  

In Dark Ages of Gothic invasions  

He was solving quadratic equations  

 

Blaise Pascal  

True rascal  

Worked hard to entangle  

That fucking triangle  

 

Sir Isaac Newton  

Partial towards gluten  

Known for plummeting apples, flummoxing wigs  

And orbital motions of cookies with figs  

 

George Boole  

No fool  

But batshit demagogic  

On the subject of logic  

 

Ada Lovelace  

Ignored her place  

And programmed a computer  

That’s smarter than you are  

 

Bernhard Riemann  

Straight up demon  

Guilty of the heinous crimes  

Of a cluster-fuck of primes  

 

L. E. J. Brouwer  

Often quite dour  

But cheered us up, since, after all  

He figured out the hairy ball  

 

Edward Lorenz  

Bought a Mercedes Benz  

Sadly, the initial conditions  

Caused expensive chaotic collisions 

     -- E R  Lutken (3: A Taos Press © 2021) 
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Brahmagupta (598-670) 
 

Today the quadratic equation 
20 ax bx c= + +  can be solved using the quadratic formula 

 

2 4

2

b b ac
x

a

−  −
= . 

 

The ancient Babylonian were able to solve some forms of the quadratic equation but lacked the algebraic 

notation needed for the general solution. (Algebraic notation wouldn’t appear until the 16th or 17th 

centuries CE). Apparently, the Greeks whose mathematical approach and methods were geometric had 

some similar results but again were hampered by the lack of algebraic notation.   

 

However, the Indian mathematician Brahmagupta who also lacked algebraic notation was able to derive a 

generalized method for solving a quadratic equation of the form 
2ax bx c+ =  (not 

20 ax bx c= + + ). That 

is  

 

 "To the absolute number" (c?)"multiplied by four times the [coefficient of the] square, add the square of 

the [coefficient of the] middle term; the square root of the same, less the [coefficient of the] middle term, 

being divided by twice the [coefficient of the] square is the value." (Brahmasphutasiddhanta, Colebrook 

translation, 1817, page 346)   This is equivalent to 

 

24

2

ac b b
x

a

 + −
=  

 

Brahmagupta is also the first known mathematician to have treated zero as a number and not just as a 

place holder. See Zero. 

 

Blaise Pascal (1623-1662) 
 

Although not the first to make use of what has become known as Pascal’s Triangle, he made use of it 

solving problems involving probability.   

 

A property of Pascal’s Triangle is that any row can 

be obtained by summing adjacent entries from the 

previous row – for example 4 + 6 = 10.  

 

If we number the rows n starting at 1 and the 

diagonals (left to right)  k  starting at 0, then the 

 (n, k) entry is given by the binomial coefficient 

( )

!

! !

n n

k k n k

 
= 

− 
recalling that by definition 0!=1 

which is the number of possible combinations (sets) 

obtain by choosing k items from a set of n. This is 

where Pascal’s Triangle is used in probability. For 

example, k n k
n

p q
k

− 
 

 
is the probability of k 

successes (probability of success = p) out of n independent trials (probability of failure = q = 1 – p). For 

1 1 

1  2  1 

1  3  3  1 

1  4  6  4  1 

1  5  10 10 5  1 

1  6  15 20 15  6 1 

1  7  21 35 35 21  7  1 

1  8  28 56 70 56 28  8  1 
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example, if you roll a fair die 5 times (or roll 5 dice one time) the probability you will roll exactly three 

6’s is 
3 2

5 1 5 1 25
. 0.03215

6
1

2
0

3 6 6 16 3

    
=  =    

    
 

 

Pascal’s Triangle and the Binomial Theorem: The entries in each row of Pascal’s Triangle are the 

coefficients for the expansion of the binomial ( )
n

a b+ . For example, the 3rd row integers 1 3 3 1 are the 

coefficients for the expansion of ( )
3 3 2 2 33 3a b a a b ab b+ = + + + . In general, ( )

0

n
n k n k

k

n
a b a b

k

−

=

 
+ =  

 
  

Pascal also invented a mechanical device, the Pascaline (see below), that could add and subtract making 

him one of the first calculating machine inventors. Unfortunately, the tooling technology of the 17th 

century wasn’t quite up to the manufacturing standards needed by the Pascaline, so the machine was not a 

success.  

 

Subsequently the computer language Pascal was named after him.   

 
Pascaline made for French currency which once belonged to Louis Perrier, Pascal's nephew. The least significant 

denominations, sols and deniers, are on the right. By J. A. V. Turck - Downloaded 2008-1-9 from J. A. V. Turck 

(1921) Origin of Modern Calculating Machines, Western Society of Engineers, Chicago, USA, p.10, fig.1 from Google 

Books, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3393262 

Isaac Newton (1642-127) 
 

Along with Leibniz, Newton is considered one of the inventors (or discoverers ?) of the calculus which he 

used to describe what is called Newtonian mechanics. His law of gravity explained planetary motion.  See 

Fundamental of Mathematics and  . 

 

Aside from his work with the calculus and planetary motion, Newton also discovered the Generalized 

Binomial Theorem which extended the Binomial Theorem (see above) to non-integer values s. That is   

( )
0

1
s k

k

s
x x

k



=

 
+ =  

 
  

where 1
0

s 
= 

 
, 

1

s
s

 
= 

 
,

( )1

2 2!

s s s − 
= 

 
and in general 

( )( ) ( )1 2 ... 1

!

s s s s s k

k k

− − − + 
= 

 
. 

https://commons.wikimedia.org/w/index.php?curid=3393262
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It’s not difficult to see that if s is a positive integer n, the standard Binomial Theorem pops out since all 

terms after the nth are zero.  

 

Aside: The Fig Newton was named after a town in Massachusetts.  

 

George Boole (1815-1864) 
 

His laws of thought led to the branch of mathematics (and logic) called Boolean Algebra which among 

other things is used to design computers.  

 

Boolean algebra is two-valued: True or False – often represented by 1 for True and 0 for False. The 

standard operations are AND, OR and NOT which work the way they do in everyday English. For 

example, if x and y are statements (like x = “Today is Monday” and y = “It’s snowing”) then x AND y is 

True if and only if both statements x and y are True.  The compound statement x OR y is True if and only 

if either x or y or both x and y are True. And obviously NOT x negates the truth of x. All in all, it’s 

simple yet Boolean algebra can be used to design computer circuits – and computers.  

 

Using 1 for True and 0 for False, Truth Tables are used to define the values derived from the Boolean 

operations AND, OR and NOT 

 
   a | b | a AND b      a | b | a OR b         a | NOT a 

  ---+---+---------    ---+---|--------       ---|------- 

   0 | 0 |    0         0 | 0 |   0            0 |   1 

   0 | 1 |    0         0 | 1 |   1            1 |   0 

   1 | 0 |    0         1 | 0 |   1 

   1 | 1 |    1         1 | 1 |   1  

 

The Boolean operations of AND, OR and NOT have 

corresponding digital gate symbols (right)  that can be used to 

design circuits that implement Boolean algebra expressions. 

 

Truth Tables can be used to evaluate compound Boolean expressions. For example, using a Truth Table 

consider the Boolean expression (a OR b) AND (NOT (a AND b))  for all possible input values of a and b  

 
 a | b | a OR b | a AND b | NOT (a AND b) | (a OR b) AND (NOT (a AND b)) 

---+---+--------+---------+---------------+----------------------------_ 

 0 | 0 |   0    |    0    |      1        |          0 

 0 | 1 |   1    |    0    |      1        |          1 

 1 | 0 |   1    |    0    |      1        |          1 

 1 | 1 |   1    |    1    |      0        |          0  

 

Using the results from the above compound Boolean expression (a OR b) AND (NOT ( a AND b)) as a 

sum bit and using (a AND b) as a carry bit we have four rules for the addition of two binary integers: 

thus, Boolean algebra to arithmetic – the resulting circuit called a Half-Adder!  

 
 a | b |(a OR b) AND (NOT (a AND b))| a AND b       

---+---+----------------------------+---------           

 0 | 0 |          0                 |    0           0 + 0 = 0 

 0 | 1 |          1                 |    0           0 + 1 = 1 

 1 | 0 |          1                 |    0           1 + 0 = 1 

 1 | 1 |          0                 |    1           1 + 1 = 10  
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  0  0  1  1  

 +0 +1 +0 +1 

 --- --- --- --- 

 00 01 01 10 

 

To the left is the corresponding digital 

circuit for a Half-Adder. Below if we 

cascade two Half Adders (contained in 

dashed circles) together we have a Full 

Adder with three inputs: a, b, and carry in 

and two outputs, sum and carry out. The 

final carry-out is the OR of the two carry 

outs from the Half Adders.  

 

 

Finally, if a Half Adder is cascaded with 3 Full Adders (see below) a 4-bit Ripple Carry Adder can be 

constructed which will add any two 4-bit binary integers. Of course, why stop at 4? 

 

 
 

Ada Lovelace (1815-1852) 
 

Ada Byron Lovelace was the daughter of the poet Lord George Gordon Byron. Her parents separated 

after a year of marriage with Byron leaving England for good one month after Ada was born, never to see 

his daughter again. Ada’s mother Anne (né Anne Isabella Milbanke) was determined that Ada would have 

  
H.A. 

  
       F.A. 

a0 b0 

s0 

c0 

  
       F.A. 

  
       F.A. 

a1 a2 a3 b1 b2 b3 

s1 s2 s3 

c1 c2 c3 
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nothing to do with her father or with poetry, so it was that Ada was introduced early in life to the study of 

mathematics.   

 

Meeting Charles Babbage she saw a demonstration of a model of his Difference Engine which performed 

calculations using the method of divided differences (see Elegy for a Slide Rule). She also became 

acquainted with Babbage’s Analytic Engine to the extent that she was able to write programs for it; thus, 

she is considered to be the world’s first programmer and has the Ada programming language named after 

her. Early on she saw the possibilities of computation as realized in the Analytic Engine. 

 

“The distinctive characteristic of the Analytical Engine, and that which has rendered it possible to endow 

mechanism with such extensive faculties as bid fair to make this engine the executive right-hand of 

abstract algebra, is the introduction into it of the principle which Jacquard devised for regulating, by 

means of punched cards, the most complicated patterns in the fabrication of brocaded stuffs. It is in this 

that the distinction between the two engines lies. Nothing of the sort exists in the Difference Engine. We 

may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jacquard loom 

weaves flowers and leaves.” 

 

Bernhard Riemann (1826-1866) 
 

Riemann is known for his work in Geometry, the Riemann Integral (taught in introductory calculus 

courses), and the Zeta Function which is tied to determining the number of primes less or equal to a given 

integer. The Riemann Hypothesis (unproved) states that all zeroes of the complex valued zeta function  

( )
0

1 1

1s s
n p prime

s
n p




−
=

= =
−

   

lie on the line 
1

2
z = . The Riemann Hypothesis is currently the greatest open question in mathematics and 

closely connected to computing the value of π(n), the prime counting function (recall that π(n) is the 

number of primes less than or equal to n). Notice in the above zeta function equation that we’re taking a 

product (the   symbol) over all the primes.  

 

L.E.J. Brouwer (1881-1966) 
 

Brouwer is known for the famous Fixed Point Theorem which 

states that for any continuous function ( )f x mapping a convex 

compact set to itself  (for example, a closed line interval, a 

closed disk, or a sphere), there is a point 0x such that

( )0 0f x x=  . See Distillations.  

 

The hairy ball theorem which is similar to Brouwer’s theorem 

states that if on the surface of a sphere you have a continuous 

vector field (think of arrows attached to each point on the 

sphere) somewhere an arrow points straight up. In other 

words, "you can't comb a hairy ball flat without creating a 

cowlick.”  

 

In other words, mathematical objects (like hairy spheres) must behave in certain ways.   
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Edward Lorenz (1917-2008) 
 

Edward Lorenz, mathematician and metrologist, is known for his pioneering work in numerical weather 

modeling and chaos and complexity theory. Chaotic systems are sensitive to initial conditions (the so-

called butterfly effect) meaning small differences in the beginning lead to large differences in long-term 

behavior. It’s why long-term weather prediction is not possible. 

 

In the 1950’s Lorenz begin using numerical methods to model weather and weather predictions – using 

variables for wind, pressure, temperature etc. Then in 1961 Lorenz using a simple computer (Royal 

McBee LGP-30) to model weather simulation made a startling discovery which he explained in his book 

The Essence of Chaos  

 

“At one point I decided to repeat some of the computations in order to examine what was 

happening in greater detail. I stopped the computer, typed in a line of numbers that it had 

printed out a while earlier, and set it running again. I went down the hall for a cup of 

coffee and returned after about an hour, during which time the computer had simulated 

about two months of weather. The numbers being printed were nothing like the old ones. 

I immediately suspected a weak vacuum tube or some other computer trouble, which was 

not uncommon, but before calling for service I decided to see just where the mistake had 

occurred, knowing that this could speed up the servicing process. Instead of a sudden 

break, I found that the new values at first repeated the old ones, but soon afterward 

differed by one and then several units in the last decimal place. . . . The numbers I had 

typed in were not the exact original numbers, but were the rounded off values that had 

appeared in the original printout. The initial round-off errors were the culprits; they 

were steadily amplifying until they dominated the solution. In today’s terminology, there 

was chaos.” 

As mentioned above, sensitivity to initial conditions means that even a very small difference in 

the initial values for a model will lead in the long run to very large differences; thus, long term 

accurate prediction of weather is impossible as is also the case for other systems which are 

chaotic.  

Lorenz also discovered a set of mathematical objects called strange attractors, systems which are chaotic 

yet have a structure to them. For example, the set of equations below where the space coordinates x, y, 

and z are all functions of the variable t for time and  ,  , and  are parameters  will generate the three-

dimension Lorenz Attractor  (right) for certain initial values 

for the parameters  ,  , and  . 

                              

( )

( )

dx
y x

dt

dy
x z y

dt

dz
xy z

dt







= −

= − −

= −

 

The Lorenz Curve (an object in 3-space – the picture on the 

right is a projection onto a plane) is called a strange attractor 

because no matter what the initial values for x, y and z are, 

eventually the orbit of the points generated will end up 
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spiraling (?) around and around the Lorenz Attractor. However, even if two starting points (values) for x, 

y, and z are initially very close, because of sensitivity of initial conditions, their orbits will appear at 

different points on the attractor; not close together.  

Sensitivity to initial conditions is often referred to as the Butterfly Effect. Although the Lorenz Attractor 

does look a bit like a butterfly, the Butterfly Effect refers to weather’s sensitivity to initial conditions 

where the beating of a Butterfly’s wing in the Amazon might affect the weather conditions in the United 

States. 

Or maybe because when … 

Edward Lorenz  

Bought a Mercedes Benz  

Sadly, the initial conditions  

Caused expensive chaotic collisions. 

 

 

For more on Chaos see All is Number 
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Distillations 

Vivid sand wheel  

Rim of charnel ground  

Sacred core 

  

Every continued function  

from a closed/bounded disk  

to itself has at least one fixed point  

where F(y) = y  

 

Stone pillars  

Vaulted canopy  

Shafts of light  

Whispers living in air  

The worn step, the candle-lit altar  

 

Multifaceted Eulerian form  

partitioned into infinite  

vertices, edges, faces  

yielding two still points  

V - E + F = 2 

  -- E R Lutken  (3: A Taos Press © 2021) 
 

The Brouwer Fixed Point Theorem! 
 
The Brouwer Fixed Point Theorem (see Math History in a Few Bad Clerihews) states that any continuous 

function ( )y f x= from a closed bounded disk onto itself has a fixed point; that is, there is a point
0x on 

the closed disk such ( )0 0f x x= . Let’s explore this in some detail. 

 

In one dimension, the line (?)  | 1 1x x−   would be a closed bounded linear disk. In two dimensions, 

the unit circle (disk) ( ) 2 2, | 1x y x y+  is a closed bounded flat disk - closed since we’re including its 

boundary perimeter. In three dimensions the solid unit ball ( ) 2 2 2, , | 1x y z x y z+ +  would be a closed 

bounded solid disk. 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the radius can be any no-zero value; here we’ve chosen 1 for convenience. 
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The Brouwer Fixed Point Theorem can be hard to see in the case of the 2-D flat disk or the 3-D solid ball 

but it’s easier to see with the 1-D line | 1 1x x−   where ( )y f x=  maps the closed interval [-1,1] on 

the x-axis continuously onto the closed interval  [-1,1] on the y-axis 

 

 

The purple curve on the right is a graph for a continuous 

function from the interval [-1,1] onto [-1,1] where every point 

on the x-axis from -1 to 1 is mapped onto a point between -1 

and 1 on the y-axis. Indeed, sometimes a y-value can have two 

or more x-values mapped to it. Since the curve is continuous 

there are no holes of breaks in the curve. The red dotted line is 

the line y = x. Note that it must cut the purple curve and where 

it does, this is where ( )0 0f x x= - a demonstration of the 

Brouwer Fixed Point Theorem for the one-dimensional case. 

 

Algebraically we can prove the same.  

 

Let ( )y f x= be a continuous onto function from  1,1− to  1,1−  (i.e.    : 1,1 1,1f − → − ). Consider the 

function ( ) ( )g x x f x= − . Note that being the difference of two continuous functions, ( )g x  is 

continuous.  

 

Case 1: If ( )1 1f − = −  then ( ) ( ) 11
0xx

g x x f x =−=−
= − = since ( )1 1f − = −  and therefore -1 is a fixed 

point for ( )f x .  

 

Case 2: If ( )1 1f = then ( ) ( ) 11
0xx

g x x f x ==
= − = since ( )1 1f = and therefore 1 is a fixed point for 

( )f x  

 

Case 3: ( )1 1f −  − and ( )1 1f  . Therefore ( ) ( )1 1 1 0g f− = − − −  and ( ) ( )1 1 1 0g f= −  . Since 

( ) ( )g x x f x= − is a continuous function on the closed interval and ( ) ( )1 1 1 0g f− = − −  and 

( ) ( )1 1 1 0g f= −  on the closed interval  1,1− then  by the Intermediate Value Theorem for continuous 

functions on a closed interval, there is a point 0x on the interval ( )1,1− such that ( ) ( )0 0 0 0g x x f x= − =

or ( )0 0x f x= making 0x a fixed point. 

 

“Every continued function  

from a closed/bounded disk  

to itself has at least one fixed point  

where F(y) = y“ 

 

Aside: The Intermediate Value Theorem says that if the graph of a continuous function ( )y f x= on a 

closed interval is negative at one endpoint and positive at the other endpoint, then the graph must cross 

the x-axis; that is, somewhere between the two endpoints there is a point 
0x such that ( )0 0f x = . It is 

intuitively obvious, but it does require a formal proof. In short, continuous functions are well-behaved! 

 

  + 
-1 

-1 -- 

+1 --

- 

 + 

+1 ← f(x0) = x0 
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Euler Polyhedron Formula: V – E + F = 2 
 

Euler’s Polyhedron Formula (see All is Number) expresses an invariant relationship between the number 

of vertices V, the number of edges E,  and the number of faces F for a 3-dimensional polyhedron: That is  

 
2V E F− + =  

 

For example, consider the five regular polyhedral: tetrahedron, cube,  octahedron, dodecahedron, 

icosahedron. 

 

The tetrahedron has 4 vertices (V = 4), 6 edges (E = 6) and 4 faces (F = 4): 4 – 6 + 4 = 2 

 

 

 

The cube has 8 vertices (V = 8), 12 edges (E = 12) and 6 faces (F = 6): 8 - 12 + 6 = 2 

 

 

The octahedron has 6 vertices (V = 6),  12 edges (E = 12) and 8 faces (F = 8):  

6 – 12 + 8 = 2 

 

The dodecahedron has 20 vertices (V = 20), 30 edges (E = 3) 

and 12 faces (F = 12): 20 – 30 + 12 = 2  

 

 

 

 

 

The icosahedron has 12 vertices (V = 12), 30 edges (V = 30) and 20 faces (V = 20): 

12 – 30 + 20 = 2 

 

Consider an n-gon prism ( 3n  ) where two n-sided polygons (e.g. 

hexagons) make up the ends and the sides are rectangles. 2V n=  , 

3E n=  , and 2F n= + . Therefore 22 3 2nn n  +− + = . 

 

A n-gon cone with a n-sided polygon base and n triangles coming to a 

common point has 1V n= + , 2E n=  , and 1F n= + . Therefore 

211 2 nn n− + ++ =  
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Now consider a square donut, a polyhedron with a hole in the middle. One way to visualize it is to think 

of a 3 x 3 array of cube with the middle cube missing.   

 

Seen from head-on, the front face has 8 faces, 16 

vertices, and 24 edges. The back face has the 

same. Connecting the front and back faces are 16 

edges and 16 faces. All together there are 32 

vertices, 64 edges and 32 faces.  

 

V – E + F = 32 – 64 + 32 = 0  

 

What this says is a square donut (with a single 

hole) or any donut with a hole is  topologically 

different from a regular polyhedron with no hole 

– like a muffin. 

 

Or topologist (again the old joke) is a 

mathematician who can’t tell the difference 

between a donut and a coffee cup.   

 

 

 

 

“Multifaceted Eulerian form  

partitioned into infinite  

vertices, edges, faces  

yielding two still points  

V - E + F = 2” 
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Elegy for a Slide Rule 
 

Fumbling for paper clips in the back of a drawer,  

my mottled fingers exhume an old slide rule  

upturned from its accidental resting place of forty years.  

 

A scrap of time, chalk frosted blackboards,  

professors with crooked glasses and unruly hair,  

classmates doodling caricatures of Nixon or Mary Tyler Moore.  

 

I greet my former self, head down, plowing through beautiful years,  

clicking the slipstick back and forth with smug precision,  

an urgent puritan youth ignorant of tolerances.  

 

Today the dingy cursor still tracks along the bamboo spine,  

remnant of talc on the slide, hairline in place but blurred,  

unlike crisp new screens flashing answers perfect to the nth degree,  

 

remarkable machines programmed with artificial click of keys,  

conjuring immaculate graphs from a morass of pixels and data entries,  

their electronic rigor well suited to the previous me.  

 

Cellophane-blue hands stuff the old instrument back into its ossuary,  

someday to be reburied in a landfill alongside warped rulers, cracked  

protractors, rusted compasses, palpable bones of the mortal body of math.  

 

My self and the slide rule will decompose to respective atoms,  

drift in cold space or populate some as yet unborn star,  

while the bloodless domain that figures pi beyond the quadrillionths,  

exact and flawless, will switch off like a light 

        -- E R Lutken  (3: A Taos Press © 2021) 
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The Cost of Calculation 
 

Mathematical calculation is costly especially before the advent of positional notation, which greatly 

simplified calculation as seen in this 1504 work of art by Gregor Reisch where the Spirit of Arithmetic 

smiles on Boethius who calculates using positional notation (aka Hindu-Arabic numbers)  while 

Pythagoras on the right struggles using a counting board for his calculations.  

 

Note the use of a counting board as an 

aid to computation – certainly needed 

if one was restricted to using Roman 

numerals to represent numbers.  

 

However, while a counting board or 

abacus was an effective (?) computing 

device for addition and subtraction 

since you were only adding or 

subtracting tokens from various 

locations, when it came to 

multiplication its only use was to store 

partial products that had to be added 

up. And as for division …. 

 

The fact is that multiplication and 

division carry a much higher 

calculational cost than addition and 

subtraction aside have having to also 

memorize the multiplication table.  

 

For example, to add 357 and 589 

 
     

 

 

 

 

 

 

You add 6 + 9 = 5 carry 1, 1 + 5 + 8 = 4 carry 1, and 1 + 3 + 5 = 9. One pass and you’re done.  

 

But to multiply 356 by 589 it’s 9 times 346 = 3204 plus 8 times 356 = 2848 

shifted left one digit because it’s really 80 times 356 plus 5 times 356 = 1780 

shifted left 2 digits because it’s really 500 times 356.  Three multiplication 

passes plus two additions. Whew! 

 

This is why logarithms were (are) important! 

 

 

 

 

 

Allegory of Arithmetic - Gregor Reisch - 1504 

     356 

    ×589 

    ---- 

    3204 

   2848 

  1780 

  ------ 

  209684 

 

 
  356 

 +589 

 ---- 

  945 
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John Napier, Henry Briggs, and logarithms 

 
In 1615 Henry Briggs (1561 – 1630), a mathematician from Gresham College in London England 

journeyed north to Edinburgh Scotland to meet John Napier (1550 – 1617), Laird of Merchiston, who in 

1614 published a treatise titled Mirifici Logarithmorum Canonis Descriptio describing a new more 

efficient method for multiplication and division using what is now referred to as Napierian logarithms.  

 

As told by John Marr to William Lilly  “Mr Briggs appoints a certain day when to meet at Edinburgh; 

but failing thereof, Merchiston was fearful he would not come. It happened one day as John Marr and the 

Lord Napier were speaking of Mr Briggs, "Oh! John," saith Merchiston, "Mr Briggs will not come now"; 

at the very instant one knocks at the gate, John Marr hastened down and it proved to be Mr Briggs to his 

great contentment. He brings Mr Briggs into my Lord's chamber, where almost one quarter of an hour 

was spent, each beholding other with admiration, before one word was spoken. At last Mr Briggs began, -

"My Lord, I have undertaken this long journey purposely to see your person, and to know by what engine 

of wit or ingenuity you came first to think of this most excellent help unto astronomy, viz. the Logarithms 

...”- 

 

Common logarithms (a.k.a. Briggsian logarithms) are Henry Briggs’s contribution to Napier’s work. 

 

Logarithms is a way to multiply (and divide) using addition (or subtraction) – it requires two tables of 

figures: a table of logarithms which given a number finds its logarithm and a table of anti-logarithms 

which given a logarithm finds its corresponding number.  

 

To multiply 356 589 you looked up the logarithms of 356 and 589: 

 

    
(356) 2.55144998

(589) 2.770115295

Log

Log

=

=
 

 

Then you added the two logarithms together: 

 
    2.55144998 2.770115295 5.321565293+ =  

 

Then using the table of anti-logarithms, you looked up the sum to obtain the product. 

 

    

(356) 2.55144998

(589) 2.770115295

2.55144998 2.770115295 5.321565293

(5.321565293) 209684

Log

Log

AntiLog

=

=

+ =

=

 

Division was done by subtracting instead of adding the two logarithms (since 
10

10
10

a
a b

b

−= ).  

 
So, what is the common logarithm of a number n?  The logarithm of n, Log(n), is the exponent you raise 

10 to equal n, so
( )

10
Log n

n = Therefore, using the laws of exponents (the mathematics behind logarithms) : 

 
( ) ( ) ( ) ( ) ( ) ( )( )10 10 10

Log n Log m Log n Log m
n m anti Log Log n Log m

+
 =  = = − +  

 

where the anti-Log(n) is the is the inverse of Log(n). 

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Briggs.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Briggs.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Briggs.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Briggs.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Briggs.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Briggs.html
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 That is 

( )Log n k=  if and only if ( )anti Log k n− =  

 

This method reduces multiplication to three table look-ups (two Log lookups and one anti-Log lookup) 

and one addition (or one subtraction for division). 

 

Of course, you have to generate (and publish) tables of logarithms and anti-logarithms (that’s what Henry 

Briggs and others did for common logarithms) but this needs only be done once. 

 

Pierre-Simon Laplace observed that logarithms “by shortening the labors doubled the life of 

astronomers”.  

 

Enter the Slide Rule 
 

The slide rule was invented by William Oughtred (1574 – 1660) around 1622 by marking two “rulers” 

with logarithmic markings (instead of equidistant marking normally found on a ruler) and sliding the two 

together to multiply and divide. That is if we “fix” the distance between the integers 1 and 10 to be a 

length of one, the distances of the in-between integers 2, 3, 4, 5, 6,7, 8, and 9 are respectively log(2) = 

0.30103, log(3) = 0.47712, log(4) = 0.60206, log(5) = 0.69897, log(6) = 0.77815, log(7) = 0.84510, log(8) 

= 0.90301, and log 9) = 0.95424, their respective logarithmic values (rounded to 5 digits). Note the log(1) 

= 0.0 since any number n raised to the 0 power equals 1 (
0 1n = ) and log(10) = 1.0  

 

 
 

To multiply 2 times 3 you would position (slide) the “1” on the upper “C” ruler to the “log 2” marking on 

the lower “D” ruler (distance 0.30103) and then from the “log 3” marking on the upper “C” ruler 

(distance 0.47712) then using the sliding cursor look down to see the 6 (distance 0.77815 – 0.30103 + 

0.47712) – the product on the lower “D” rule. Division was done by reversing the process. 

 

To multiply 356 times 589 you would position the “1” on the upper ruler (marked C on left) over the 

(approximate) ”log 3.56” marking on the lower ruler (marked D on left) then using the sliding cursor scan 

over to the (approximate) “log 5.89” marking on the upper C ruler and read off the number of the lower D 

ruler. Since you were multiplying 3.56 × 102 and 5.89 × 102 your answer would be 20.9684 × 104. Using 

the slide rule required the user to keep track of orders of magnitude; a slide rules might only have an 

accuracy to 2 or 3 decimal places (though size counts!).  

 

In addition to the C and D scales used for multiplication and division, there were other scales for 

multiplication/division  by π and multiplication/division by trig functions. 
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“Today the dingy cursor still tracks along the bamboo spine, 

remnant of talc on the slide, hairline in place but blurred, 

unlike crisp new screens flashing answers perfect to the nth degree,” 

 

In summary, the analog slide rule of yesterday has been replaced by the digital hand calculator. 

 

“remarkable machines programmed with artificial click of keys,  

conjuring immaculate graphs from a morass of pixels and data entries,  

their electronic rigor well suited to the previous me.”  

 

A Footnote: Using my father’s Keuffel & Esser Log-Log Duplex Decitrig slide rule (not pictured above) 

356 × 589 obtained an answer of 210,000. Since the correct result is 209,684 the absolute error was 316 

but the relative error is 
316

0.001487
209684

 , off by less than 0.2% which is pretty good.  

Did Logarithms lead indirectly to the Computer? 
 

There is a story that Charles Babbage, the inventor of the Difference Engines #1 and #2 and later the 

Analytic Engine, despairing over the numerous errors found in the hand generated mathematical tables 

used in calculations (like logarithm tables) exclaimed “I wish to God these calculations had been 

executed by steam”.   

 

Supposedly the problem of errors in hand generated mathematical tables led to Babbage’s invention of the 

two Difference Engines, calculating machines that would have generated mathematical tables using steam 

power and then to his programable Analytic Engine, a never-build precursor to today’s modern computer. 

Charles Babbage is often referred to as the “Grandfather of the Computer”.  

 

Since any well-behaved function like a logarithmic function could be approximated by a polynomial, 

Babbage’s Difference Engines used the method of divided differences to compute a polynomial 

approximation to a well-behaved function. However, evaluating a polynomial requires computing powers 

of the variable x which requires multiplication which as mentioned above is an expensive operation. The 

method of divided differences nicely gets around this problem requiring only the operations of addition 

and subtraction. Recall from Math History in a Few Bad Clerihews that Pascal constructed a calculating 

machine that could add and subtract; a similar though much improved mechanism was used by Babbage’s 

engines which were also able to print the results for tables of values for a function – like a table of 

logarithms  thus avoiding the errors found in hand generated mathematical tables.    

 

We’ll use a simple example to demonstrate how the method of divided differences works and how it was 

implemented on Babbage’s Difference Engine.  

 

We begin with an unknown function y = f(x) 

evaluated at the five x-values 1, 1.5, 2, 2.5 and 3 

with corresponding y-values 4, 3.875, 5, 8.125 and 

14 (in black on the table to the right).  The first 

difference values (in red) in column ∆f are obtained 

by subtracting adjacent f(x) values, i.e. f(xn+1) – 

f(xn). Likewise, the 2nd difference values ∆2f are 

obtained in a similar manner from the ∆f column and so on. Note that the entry for the 4th difference is 0 

which suggests that y = f(x) might be a cubic polynomial.  

 

x f(x) ∆f ∆2f ∆3f ∆4f 

1 4 -0.125 1.25 0.75 0 

1.5 3.875 1.125 2.0 0.75  

2 5 3.125 2.75   

2.5 8.125 5.875       

3 14         
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The five values on the first row: 4, -0.125, 1.25, 0.75, 0 are the starting values used to 

recursively compute values for the function f(x).  To start each new row of figures first copy the right 

most column value (0) to the row below. Next moving right to left pairwise sum adjacent entries entering 

each sums in the row below ; that is  

 
       | 4.0 + -0.125 | -0.125 + 1.25 | 1.25 + 0.75 | 0.75 + 0 |  0 

       |   3.875      |     1.125     |     2.0     |    0.75  |  0 

 

Repeating this pairwise summing of adjacent entries, we 

obtain new and existing entries in rows 2: f(1.5), 3:f(2), 

4:f(2.5) and 5:f(3). Eventually we compute new entries for  

f(3.5), f(4), f(4.5) etc. using a method that computes a 

polynomial approximation to the function f(x) – all done using 

only addition and subtraction. 

 

Babbage’s Difference Engine #2 was finally constructed in 

the 1990’s (see picture on the right). The Engine could store eight 31-digit numbers and could generate a 

table of 7th degree polynomial approximations to any function.  

 

The initial values obtained from the 

divided difference method were stored in 

number columns 1 thru 8. The engine 

added column 8 to column 7, column 7 

to column 6, etc. finally adding column 2 

to  column 1 obtaining the  new value of  

f(x) in column 1. Repeating the action of 

the Difference Engine would result in a 

list of values for the function f(x). 

Babbage incorporated a printer that 

would print out the final values of f(x) 

thus avoiding human mistakes in 

calculating mathematical tables.   

 

An efficient mechanism used by the 

Difference Engine first added the odd 

numbered columns to the even numbered 

columns (7 to 6, 5 to 4, 3 to 2) then the 

even numbered columns to the odd 

numbered columns (8 to 7, 6 to 5, 4 to 3, 

2 to 1) instead of rippling the addition of 

columns 8 to 7, 7 to 6 etc. down the line 

of columns. Babbage was a mechanical genius!   

 

The Difference Engines #1 and #2 were never completed (nor was  Babbage’s Analytic Engine) with 

Difference Engine #2 being a  better version of #1. In the 1990’s using Babbage’s drawings, two copies of 

Difference Engine #2 were built thus validating Babbage’s original design.   

 

 

 

 

 

x f(x)     

1 4.0 -0.125 1.25 0.75 0 

1.5 3.875 1.125 2.0 0.75 0 

2 5.0 3.125 2.75 0.75 0 

2.5 8.125 5.875 3.5 0.75 0 

3 14.0 9.375 4.25 0.75 0 

3.5 23.375 13.625 5 0.75 0 

Difference Engine (No 2) - Computer History Museum in Mountain View, CA 



173 
 

 

The Happy Ending Problem 

for Paul Erdős, George Szekeres, and Esther Klein 

 

For the dots and lines, the cups and caps 

required to create convex polygons,  

figures with no dents to catch sadness,  

no pits to hide festering anaerobes,  

no diverticula to sequester pain,  

there might be a precise formula  

(for an n-sided polygon, 1+ 2n-2 dots)  

but as of now, the answer is elusive.  

 

Diamond lives of shimmering proofs, paintings, poems,  

epic loves lasting through lifetimes,  

storied octagons, nonagons, decagons, on and on,  

astonishing constellations traced in cold stars,  

miracles of combinatorics shine in a chaotic world.  

 

In deep space churning with galactic flecks and threads,  

shapes melt like snowflakes, each tearful unraveling  

a vestige of time spent in a house of endings,  

last siege of the bravest of sagas.  

The weight of loss brought to bear,  

at best, a peaceful, concave sorrow 

     --E R Lutken (3: A Taos Press © 2021) 

 

The Happy Ending Problem 
 

There is a Happy Ending Problem named by Paul Erdos (1913- 1996) which did lead to the marriage of 

George and Ester (ne Klein) Szekeres which states 

 

Given any set of 5 points in general position in the plane (as opposed to special position 

like a colinear set) there are four points which form a convex quadrilateral. It’s easy to 

demonstrate. We may assume the term general position means that no three of the points 

are co-linear.   

 

For example, given 5 points in general position, the first three red, green, blue points form a 

triangle. If a fourth purple point is outside the triangle, a convex quadrilateral is easily obtained so 

we’ll assume the fourth purple point is inside.  

 

 

 

 

 

 

 

 

 

Purple Point 
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A fourth purple point with each of the other three vertex points can be used to construct 3 lines 

which partition the interior of the triangle into 6 smaller triangles. The fifth black point in any of 

the 6 small triangles creates an obvious convex quadrilateral.  In the above example green-purple-

black-blue.  

 

“there might be a precise formula 

(for an n-sided polygon, 1 +2n-2 dots) 

but as of now, the answer is elusive” 

 

This refers to the Erdős–Szekeres conjecture which states a more general relationship between the 

number of points in a general-position point set and its largest convex polygon, namely that the smallest 

number of points for which any general position arrangement contains a convex set of n points is 21 2n−+

points. It’s an unproven conjecture.  

 

For Example, n = 5 for any set of 9 points a convex pentagon will appear; that is, given any set of 9 points 

in general position, five of them will form a convex pentagon.  

 

To start, arrange 8 points in a general position (i.e. no 3-point lines) such that there are no convex 

pentagons (think quadrilaterals only). This is the hard part. Now wherever you place a 9th point a convex 

pentagon will result.  

 

In other words, it’s impossible to arrange any 9 points in a general position in the plane without creating a 

convex pentagon. 

 

For n = 6 a convex hexagon is created for any set of  2

6
1 2 17n

n

−

=
+ =  points. Arrange 16 points in a 

general position such that no convex hexagons are formed (think pentagons only) – then whenever you 

place a 17th point a convex hexagon will result.    
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A Python Programming Appendix 

 

Finding Primes 
 

The following  Python program tests if any integer n up to 10,000 has a prime divisor (not equal to n). If n 

has a prime divisor, then n is not prime; otherwise n is prime. 

 
def main(): 

    plist = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, 

             53,59,61,67,71,73,79,83,89,97] # list of primes < 101  

    n = eval(input("\nEnter an integer less than 10,000: ")) 

    IsPrime = True   # assume n is prime and test for otherwise 

    for p in plist:  # search for a prime divisor 

        if (n % p == 0) and (n != p): # if prime p divides n and n is not p 

            IsPrime = False           # then n is not prime 

            break 

    if IsPrime: # found no prime divisors 

        print("\n{0} is Prime".format(n)) 

    else:       # found a prime divisor 

        print("\n{0} is not prime with divisor {1}".format(n,p)) 

     

 

MonteCarloTruel.py 
 

Below is Python code (and sample run) for a simulation of a Truel with some simplifications. In each 

round, a remaining gunfighter can randomly shoot any other gunfighter thus allowing both duel plus one 

and round robin configurations to occur randomly. 

 

The variables g1, g2, and g3 are 0 or 1 indicating whether Gunfighter #1, Gunfighter #2 and/or 

Gunfighter #3 are dead (0) or alive (1). Their sum is used to track how many gunfighters are left standing. 

The variables p1, p2, and p3 are the corresponding probabilities for each gunfighter being able to hit his 

or her target assuming the same probability for each target. All surviving gunfighters shoot 

simultaneously. 

 

coinToss() returning ‘H’ (heads) or ‘T’ (tails) is used (in threeWay()see below) to randomly 

select which gunfighter is being targeted. That is, each 
, 0.5i js =  

 

hit(p) returns True or False indicating if that gunfighter (indicated by parameter p1, p2, or p3) 

was successful in hitting his or her target, If successful coinToss()then is used in the treeWay() 

function (see below) to select the targeted gunfighter.  

 

threeWay(p1,p2,p3) randomly allows each gunfighter to shoot at the other two returning 0 or 1 for 

each targeted gunfighter indicating if they are alive (1) or dead (0). Action is simultaneous. 

 

twoWay(p1,p2),twoway(p2,p3), and twoway(p1,p3) does the same for any pair  

gunfighters who survive a three-way shoot out.   

 

The variables cnt0, cnt1, cnt2, and cnt3 track the number of no winners, gunfighter #1 wins, 

gunfighter #2 wins and gunfighter #3.   
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# File: MonteCarloTruel.py 

# Date: September 25, 2021 

# 

# Desc: Monte-Carlo Simulation of a Truel 

#       a three way duel 

# 

 

from random import *  # import random number generator functions 

 

def coinToss(): 

    # returns 'H' or 'T' 

    if randrange(2) == 1: 

        return 'H' 

    else: 

        return 'T' 

 

def hit(p): 

    # returns True if random value <= p 

    return random() <= p 

 

def threeWay(p1,p2,p3): # one round – each fires one shot 

     

    g1 = g2 = g3 = 1  # assume all gunfighters are alive 

                       

    # g1 fires at g2 or g3   

    if hit(p1): 

        if coinToss() == 'H':  

            g2 = 0 # g2 is hit 

        else: 

            g3 = 0 # g3 is hit 

 

    # g2 fires at g1 or g3 

    if hit(p2): 

        if coinToss() == 'H': 

            g1 = 0 # g1 is hit 

        else: 

            g3 = 0 # g3 is hit 

 

    # g3 fires at g1 or g2 

    if hit(p3): 

        if coinToss() == 'H': 

            g1 = 0 # g1 is hit 

        else: 

            g2 = 0 # g2 is hit 

         

    return g1, g2, g3    # return who lives/who dies 

 

def twoWay(p1,p2):  # one round - each fires one shot 

 

    g1 = g2 = 1# assume both gunfighters are alive 

 

    if hit(p1): 

        g2 = 0 

    if hit(p2): 

        g1 = 0 

    return g1, g2 # return who lives/who dies                      

A Sample Run 

 

Monte-Carlo Based Truel 

 

Input #1 Probability: 0.5 

Input #2 Probability: 0.5 

Input #3 Probability: 0.5 

Input Number of Trials: 50000 

 

Total Outcome Counts 

 

#1 Survives: 13079 - 26.16% 

#2 Survives: 13150 - 26.30% 

#3 Survives: 13055 - 26.11% 

No Survivors: 10716 - 21.43% 
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def main(): 

    print("\nMonte-Carlo Based Truel\n") 

 

    # get probabilities for a hit 

     

    p1 = eval(input("Input #1 Probability: ")) 

    p2 = eval(input("Input #2 Probability: ")) 

    p3 = eval(input("Input #3 Probability: ")) 

 

    numTrials = eval(input("Input Number of Trials: ")) 

     

    # initiallize count of winners 

     

    cnt0 = 0  # count no survivors       

    cnt1 = 0  # count of #1 survives 

    cnt2 = 0  # count of #2 survives 

    cnt3 = 0  # count of #3 survives  

 

    for k in range(numTrials):  # main counting loop 

 

        g1 = g2 = g3 = 1   # 0 = dead; 1 = alive 

         

        while (g1 + g2 + g3 == 3): # loop while 3 survivors 

            g1, g2, g3 = threeWay(p1,p2,p3) 

             

        while (g1 + g2 + g3 == 2):  # loop while two survivors  

            if g1 == 0:  # 2 and 3 survived 

                g2, g3 = twoWay(p2,p3) 

            elif g2 == 0:  # 1 and 3 survived 

                g1, g3 = twoWay(p1,p3) 

            elif g3 == 0:  # 1 and 2 survived  

                g1, g2 = twoWay(p1,p2) 

 

        # total results 

 

        cnt1 = cnt1 + g1 

        cnt2 = cnt2 + g2 

        cnt3 = cnt3 + g3 

        if (g1 + g2 + g3) == 0: 

            cnt0 = cnt0 + 1 

 

    # output results 

 

    print("\nTotal Outcome Counts\n") 

    print("#1 Survives: {0:4} - {1:5.2f}%".format(cnt1,cnt1/numTrials *100)) 

    print("#2 Survives: {0:4} - {1:5.2f}%".format(cnt2,cnt2/numTrials *100)) 

    print("#3 Survives: {0:4} - {1:5.2f}%".format(cnt3,cnt3/numTrials *100)) 

    print("No Survivors: {0:4} - {1:5.2f}%".format(cnt0,cnt0/numTrials *100)) 

    print() 

             

main()         
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An Afterword: Primes. the Palindromic Year 2002 and Discovery of Patterns 

Mathematics is often described as the discovery of numeric patterns. This is a very human activity since 

we constantly detect patterns all around us, numeric or not so in some sense all of us, as humans, are 

mathematicians. For example, consider the pattern found in the year 2002 – it’s a palindrome number 

reading the same forward and backwards. Mathematics seeks to understand the logical necessity for why 

these patterns exist. For example, there are only ten palindromic years for the 3rd millennium. To make 

this statement we do not need to check out all one thousand integers between 2000 and 2999. Instead, we 

look deeper. We know that the first and last digits both must be 2 and we know that the middle two digits 

are the same. Since there are only ten digits there can only be ten palindromic years. This is mathematics: 

the discovery of a pattern and the presentation of a logical argument demonstrating why the pattern 

necessarily follows.  

The fascination of mathematics is that when one pattern is solved, another immediately presents itself 

which leads to the discovery of a deeper pattern. Since we  know about primes (positive integers whose 

only divisors are one and themselves) it is natural to ask if an integer is prime. There is a logical argument 

(we call them proofs ) that shows that any palindromic number with an even number of digits has 11 as a 

divisor. Therefore, every even digit palindrome is composite (non-prime). However, this proof does not 

hold for palindromes with an odd number of digits as there are odd digit palindromes which are prime 

(example 929). We know there is no largest prime but is there a largest prime palindrome?  

Mathematics is important because of its usefulness in solving real world problems. (Recall Eugene 

Wigner’s statement about the unreasonable effectiveness of mathematics from the opening Fundamentals 

of Mathematics essay). But that’s only half of the fascination of mathematics, and in my opinion, the 

uninteresting half. Mathematics provides us with tools to understand patterns found in everyday life. 

Mathematics helps us to define these patterns, understand these patterns, and then leads us to discover 

deeper patterns.  The fascination of mathematics is both universal and timeless. As the fifth century 

philosopher Proclus put it 

This, therefore, is mathematics; ... she gives light to her own discoveries; she awakens the mind and 

purifies the intellect; she brings light to our intrinsic ideas; she abolishes the oblivion and ignorance 

which are ours by birth. 

 

 


