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The story of the quadrature (squaring) of the lune spans 2500 years of history. It is a 

problem which was first studied by Greek mathematicians of the 5th century BCE but was 

not resolved until the middle of the 20th century CE when the Russian mathematicians 

Tschebotaryov and Dorodnov proved what had been suspected for some time, that only 

five such lunes existed. A lune is the crescent-like figure formed by intersecting two 

circles. To square a lune is to construct using only straight-edge and compass a square 

that has the same area. You can't just measure the area of the lune then construct a square 

with the same area; you have to construct the square from the lune. 

 

Early Greek mathematicians were fascinated by three classical problems: doubling the 

cube (called the Delian Problem), trisecting the angle, and squaring the circle; that is 

constructing a square equal in area to a given circle. They also classified problems by the 

means used to solve them. According to Pappas of Alexandria (ca. 320 CE) plane 

problems could be solved in the plane using only straight-edge and compass 

constructions, solid problems could be solved using conic sections and linear problems 

required the use of more complicated curves (Heath p. 218; Boyer p. 204). The means 

used to square the lune discussed here are planar: straight-edge and compass only! 

 

The 5th century BCE Greek mathematician Hippocrates of Chios (not to be confused with 

the more famous physician, Hippocrates of Cos) is credited with finding three squarable 

lunes. According to a 6th century CE commentary on Artistotle by Philoponus, 

Hippocrates was originally a merchant who "fell in with a pirate ship and lost all his 

possessions" (Calinder p. 59) although other sources imply he was a not-so-clever 

merchant who was defrauded by corrupt tax-officials (van der Waerden p. 131). In any 

case he went to Athens to pursue his case against those who defrauded him, a process 

which apparently took a long time and whose outcome is not known. While in Athens he 

"consorted with philosophers" (Calinder p. 59) and becoming proficient in geometry used 

his new found talent to become a teacher. He is credited with writing a book on geometry 

(which was lost), finding a non-planar solution to the Delian problem of doubling the 

cube (which involved finding the solution to a double mean proportion) and, as already 

mentioned, squared the lune. In his book, van der Waerden (van der Waerden p. 132) 

suggests that Hippocrates' interest in squaring the lune might have stemmed from the 

similar problem of squaring the circle. Indeed the 3rd century CE writer Alexander of 

Aphrodisiensis credits Hippocrates with showing that if a certain kind of lune can be 

squared, then the circle can be squared (Dunham p. 20, van der Waerden p. 132).  

 

Aside from its long history, the lune quadrature problem is interesting because of its ties 

with other famous problems in mathematics. Squaring the lune is an early attempt to find 
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the area of a curved figure, something easily done today using integral calculus1. And 

because of the connection with squaring the circle, it has ties with find values for π.  

 

Some Important Definitions and Preliminary Results 

 

Before constructing the five quadrable lunes, we need to set down some definitions and 

results. Recall that a lune CGDF (figure 1) is the concave figure formed by the 

intersection of two circles (centers at A and B) usually of different diameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

Given a central angle (e.g., CAD∠ ) a sector is the area formed by the intersection of the 

two radii with the circumference of the circle. If θ is the measure of the central angle, the 

area of the sector is 2

2
r

θ
. If 2θ π= we have the familiar equation for the area of a circle. 

 

A circular segment is the area between a chord which cuts the circle at two points and the 

circumference (CGDE). The base of the segment (CD) is the chord. Segments are similar 

if their central angles are equal. An important result used by Hippocrates (easily proved 

today) is that the areas of similar segments are to each other as the squares of their bases. 

Observe that a lune is the difference of two circular segments with a common base; lune 

CGDF = segment CGDE – segment CFDE.  

 

Since we’re restricted to straight-edge and compass constructions we need to be clear 

about what kinds of figures are constructable. It is important to point out that there is a 

close connection between constructable lines and a certain class of numbers, specifically 

a number is constructable if its magnitude which is represented by the length of a line 

segment can be constructed using only straight-edge and compass. For example, given 

                                                 
1 See the article by Shenitzer and Stephans titled The Evolution of Integration; Am. Math. Monthly, Vol 

101, No 1 Jan 1994, pp. 66-72. 
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two lines of lengths a and b with a > b, it’s not difficult to construct a line with length a+b 

or a–b simply by adding or subtracting length b to or from a.2   

 

Multiplication and division constructions are done using similar right triangles. For 

example consider the two similar right triangles ABC and XBY in figure 2. Because of 

similarity 

  

AB XB or AB BY XB BC
BC BY

= ⋅ = ⋅  

 

Let AB = a. If BC = 1 and BY = b then XB = ab. Alternately if BC = b and BY = 1 then 

XB = a/b. Thus magnitudes obtained by multiplication and division are constructable. . 

 

 
Figure 2 

 

Taking the square root of magnitude a involves a semicircle (figure 2) whose diameter is 

a+1. If perpendicular OB is constructed where AO = a and OB = 1 then using similar 

right triangles AOB and BOC it can be shown that x a= . 

 

Thus magnitudes obtained by using the five operations of addition, subtraction, 

multiplication, division and square roots are constructable; for example numbers like 

3 3

2

−
or 

4 3

2
 in that lines can be constructed with these lengths. Note that 3 2 being a 

cube root is not constructable. 

 

Finally it should be point out that any rectilinear figure is is squarable or quadrable; that 

is, given any plane figure with straight sides, it is possible to construct a square with the 

same area. For example, given any rectangle, a square can be constructed with the same 

area (see Dunham p. 13). Given a triangle whose area is 
1

2
base height× , a rectangle can 

                                                 
2 The constructions are given as Propositions I.2. and I.3 in Euclid’s Elements which state “From a given 

point … draw a straight line equal to a given line” [Prop. I.2] and  “From the greater of two given straight 

lines .. cut off a part equal to the less” [Prop I.3].  
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be constructed whose area equals the triangle and since the rectangle is quadrable, so is 

the triangle. Finally since any rectilinear figure can be partitioned into triangles each of 

which is quadrable and since given two squares, a third can be constructed equal to the 

sum of the other two (Pythagorean theorem), any rectilinear figure is quadrable.    

 

The challenge now is to square a curved figure, like a lune.   

 

The Three Classical Lunes of Hippocrates  

 

Hippocrates of Chios is credited with finding three quadrable lunes which I refer to as the 

isosceles triangle lune, the isosceles trapezoid lune, and the concave pentagon lune. 

Their constructions are given below. 

 

The Isosceles Triangle Lune 

 

The easiest quadrable lune to construct and the one most often seen is based on an 

isosceles right triangle. See Figure 3 below.  

 

1. On the base CE of a semicircle with center A construct the perpendicular bisector 

AD. Observe that CDE is an isosceles right triangle with : 2 :1CE CD =  

 

2. Let B be the midpoint of CD and construct a second semicircle with base CD and 

center B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

3. Since : 2 :1CE CD =  the area of semi-circle CGD equals half the area of semi-

circle CDE which is equal to the quarter circle ACFD.  

 

4. Since the segment CFDB is common to both the quarter circle ACFD and the 

semicircle CGD, the lune CGDF equals the triangle ACD which also equals the square 

ABDH. 
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5. Alternately because the circular segments with bases CG and GD are similar to 

the circular segment with base CD and : : 1:1: 2CG GD CD =  it follows that lune 

CGDB is also equal to isosceles right triangle GCD.  

 

The Isosceles Trapezoid Lune 

 

The second quadrable lune is based on the construction of a constructable isosceles 

trapezoid CHKD the ratio of whose sides are : : : 3 :1:1:1CD CH HK KD = . 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

 

1. Since trapezoid CHKD is isosceles, it can be inscribed in a circle with center B4. 

 

2. Construct triangle CAD similar to triangle CBH and with center A then construct 

a circle thru points C and D. The circular segment with base CD is similar to circular 

segments with bases CH, HK, and KD.  

  

3. Since : : : 3 :1:1:1CD CH HK KD = , the circular segment with base CD is equal to 

the three circular segments with bases CH, HK, and KD. Thus the area of trapezoid 

CHKD equals lune CHKD. 

 

4. Alternately it can be shown that the two sectors whose central angles are CBD∠  

and CAD∠ are equal in area since : 1: 3CAD CBD∠ ∠ =  and : 3 :1CA CB = .After 

                                                 

3 Using right triangles it can be shown that the height of this trapezoid is 
4 3 3

22
= a constructable 

magnitude. 
4 The can be done by showing the perpendicular bisectors of CH, HK, and KD meet at a common point B. 
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subtracting the common area CFDB from both sectors, the resulting lune CHKD equals 

the kite-like quadrilateral ACBD.  

 

The Concave Pentagon Lune 

 

The third and last of the lunes that Hippocrates showed was constructable is based on a 

concave pentagon-like figure CFDKH (Figure 5) the ratio of whose sides are 

: : : : 3 : 3 : 2 : 2 : 2CF FD DK KH HC = . Hippocrates’ construction is more 

complicated than the other two and makes use of the neusis (verging or inclination) 

construction where a fixed length line segment is fitted between two curves in such a way 

that its extension passes through a given point.  

 

1. Begin by constructing a semicircle with diameter JH and center K. Bisect KH at 

Q and erect a perpendicular QP.  

 

2. Now comes the neusis construction. To quote Heath "Let the straight line [DF] be 

so placed between [QP] and the circumference that it verges towards [H] … while its 

length is also such that the square on it is 1 ½ times the square of the radii" (Heath p. 

193). That is, for a point D on the semicircle, construct line DH such that if F is the point 

of intersection with QP then 
2 23

2
DF DK= ;  the fixed length line segment DF when 

extended goes through H. 5  

 

3. From D, we construct a line parallel to the diameter JH and from H construct a 

line equal to DK which intersects this parallel at C. Thus CHKD is an isosceles trapezoid 

about which we circumscribe with a circle with center B.  

 

                                                 
5 It's not exactly clear how to construct the line DH but we can construct a line FH such that if it is 

extended to D, then   
2 23

2
DF DK= . Observe that if such a line existed, the isosceles triangles KFH and 

DKH are similar and thus it follows that FH DK
KH DH

= . Letting a DK KH= = and x FH= , 

since
3

2
DH a x= + we obtain the quadratic 2 23

0
2

x x a+ − = . Thus 

2
23 3 3 3

8 8 8 8
FH x a DK= = + − = + −  which is constructable using compass and straight-edge. 
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Figure 5 

 

4. Next construct a second circle through the three points C, F and D with center A 

observing that DF FC= . Since : 3 : 2DF DK = then 

: : : : 3 : 3 : 2 : 2 : 2CF FD DK KH HC = .  

 

5. The next step is to show central angles FAC HBC∠ = ∠ . If this is the case, then all 

five central angles are equal so the circular segments on bases CF, FD, DK, KH, and HC 

are similar. Since : : : : 3 : 3 : 2 : 2 : 2CF FD DK KH HC =  lune CGDF equals the 

convex pentagon CHKDF. 

 

6. To show FAC HBC∠ = ∠ , for the corresponding isosceles triangles show base 

angles AFC∠  and BHC∠  are equal. This will be done using right triangles FEC and 

HRC, point R being where radius BH intersects chord KC at a right angle (this is easily 

proved using the congruency of triangles KRH and CRH). To show AFC BHC∠ = ∠ we 

consider their complements and show ECF HCR∠ = ∠ .  

 

7. To show ECF HCR∠ = ∠  note that HCK HKC∠ = ∠  (base angles of isosceles 

triangle KHC) and HKC ECK∠ = ∠ (alternate angles of parallel lines DC and KH).Thus 

ECF HCR∠ = ∠ ,  AFC BHC∠ = ∠ , and FAC HBC∠ = ∠ . 

 

8. Alternately we point out that since central angles : 2 : 3CAD CBD∠ ∠ = and radii 

: 3 : 2AC BC = the areas of sectors CAD and CBD are equal. Hence lune CGDF 

equals the area of the dart-like quadrilateral ACBD.  

  

A 

C D 

K H J 

B 

F 

G 

P 

E 
R 

Q 



 8

Finding All Quadrable Lunes: The Equation sin( ) sin( )m mα α=  

 

Since the constructions for the quadrable lunes have become increasingly complex, we 

might ask if there is a general method for constructing all such lunes.  

C C 

D D 

A A B B E E α β β α F F 

Figure 6 

 

If a lune is the concave figure generated by the intersection of two circles with centers A 

and B, let CD be the line obtained from their intersection and E the point where CD 

intersects the line determined by centers A and B. Then either centers A and B are on one 

side of E (i.e ∠CBF = β is less than π/2) or E is between A and B (∠CBF = β is greater 

than π/2).  

 

If we let 2α and 2β be the measures of the central angles ∠CAD and ∠CBD and rα and rβ  

the corresponding radii of the two circles, it follows that the area of the lune is the 

difference of the two circular segments with base CD That is the area of the lune is  

 

( )2 2 2 2cos( )sin( ) cos( )sin( )r r r rβ β α αβ β β α α α⋅ ⋅ − ⋅ − ⋅∓  

 

with the minus or plus depending on whether centers A and B are on the same or opposite 

sides of point E.  

 

In the three lunes constructed above, the two sectors ACD and BCD were always equal in 

area. If we make this simplifying assumption that the two sectors have the same area, that 

is 
2 2

r rα βα β⋅ = ⋅  

then the area of the lune reduces to 

 
2 2cos( )sin( ) cos( )sin( )r rα βα α β β⋅ ⋅∓  

 

which in either case equals the area of the kite/dart-like quadrilateral ACBD. 
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If we let mβ α= ⋅  for some rational m, then the simplifying assumption 2 2
r rα βα β⋅ = ⋅  

becomes 2 2 r
r m r or m

r

α
β α

β

α α= = . 

We also observe that half of CD , the common base for both circular segments, unites α 

and β, rα  and rβ ; that is sin( ) sin( )CE r rα β
α β

= = . Substituting form α β⋅  and  

for
r

m
r

α

β

 in this equation yields 

sin( ) sin( )m mα α⋅ = ⋅  

 

If we can solve this equation for sin(α) in such a way that sin(α) is constructable (that is 

sin(α) can be expressed using only the four arithmetic operations plus square roots), then 

it follows that 2 2
r rα βα β⋅ = ⋅  and hence the corresponding lune is equal to the area of the 

kite/dart-like quadrilateral ACBD. 

 

Constructing the Lune 

 

Suppose sin( ) sin( )m mα α= has a constructable solution for m > 1, that is sin( )α is 

constructable. To construct the quadrable lune, do the following. 

 

Starting with line ℓ and constructable length sin( )α  

1. Construct CE  = sin( )α  = DE  perpendicular to line ℓ at E.  

2. Construct 1AE AD= =  where A is a point on ℓ .  Thus α is the measure 

of CAE DAE∠ = ∠ .  

3. Construct a circle with center A and radius AC AD=  

4. Construct 
1

CB DB
m

= = 6 noting there are two possibilities for B, the obtuse 

case which we label as B'.  Let  β be the measure of CBE DBE∠ = ∠  (acute case) 

and let β' be the measure of ' 'CB G DB G∠ = ∠  (obtuse case). Observe  

'β π β= − .  

5. Construct a circle with center B (or B') and radius CB DB= (or ' 'CB DB= ). 

 

6. Since 
sin( )

sin( )
1

m

α
β = , then sin( ) sin( ) sin( )m mβ α α= ⋅ = ⋅ . Since the same is 

true for β', either mβ α= ⋅ or ' mβ α= ⋅ .  

                                                 

6 Since sin( ) sin( ) 1m mα α= ≤  it follows that 
1

sin( )
m

α ≤  
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Figure 7 

 

7. Without loss of generality let m α β⋅ = . It then follows that sector CAD (central 

angle 2α , radius 1) and sector CBD (central angle 2β, radius
1

m
) are equal in area. 

After deleting the common area, CFDB, the area of the lune CGDF remaining from 

sector CBD equals the area of the quadrilateral ACBD remaining from sector CAD. In 

the case of the isosceles right triangle lune, ACBD is an isosceles right triangle.  

 

 Thus lune CGDF is quadrable! 

  

Two Other Quadrable Lunes 

 

It turns out there are only five values of m for which the equation sin( ) sin( )m mα α=  

has a constructable solution. The first three values, m = 2, m = 3 and m = 3/2, give the 

isosceles triangle, the isosceles trapezoid and the concave pentagon lunes found by 

Hippocrates7. The two other cases are m = 5 and m = 5/3.  

 

m = 5: The Hexagon Lune 

 

Rewrite sin(5 ) 5 sin( )α α= as sin( )cos(4 ) sin(4 )cos( ) 5 sin( )α α α α α+ =  which 

reduces to ( )2 2sin( ) cos (2 ) sin (2 ) 2sin(2 ) cos(2 )cos( ) 5 sin( )α α α α α α α− + = . Using 

                                                 
7 For m = 2 we obtain the equation 2 sin( ) sin(2 ) 2 ( ) cos( )sinα α α α= =  whose solution is 

1 1
cos( ) sin( )

2 2
orα α= = . Thus sin(α) is constructable with 

4

π
α = and 

2

π
β = . This is the isosceles 

right triangle lune. The details for m = 3 and m = 3/2 which yield the isosceles trapezoid and the concave 

pentagon lunes are given in the Appendix.  
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suitable substitutions this equation can be further reduced to the quadratic equation 

in 2sin ( )α  

 
4 216sin ( ) 20sin ( ) 5 5 0α α− + − =  

 

This can be solved for
5 5 4 5

sin( )
8

α
± +

= . Since the "plus" value results in a value 

greater than 1, only the "minus" value works. This makes α ≈ 0.40909 radians or 23.44°, 

β ≈ 2.04545 radians or 117.196°  andsin( ) / sin( ) 5β α = .  

 

Figure 8 

 

Since β is greater than 90°, point E is between A and B makes the lune look a bit like the 

isosceles trapezoid lune.  

Figure 8 shows this lune with
5 5 4 5

sin( )
8

CE α
− +

= = , 1AC = , and 1
5

BC = . 

Lune CGDF is equal in area to the “kite-like” quadrilateral ACBD (because E is between 

A and B we add the area of figure CFDB).  

 

We can also show that the area of the lune CGDF is equal to the area of the flattened  

hexagon CHKLMD where the ratio of the base CD  to the other 5 sides is 5 :1:1:1:1:1.   

 

Starting with the figure obtained from the construction, construct ∠KBG = ∠ LBG equal 

to angle α = ∠CAE. Bisect angles CBK and LBD. Since β = 5α, ∠ CBH = ∠HBK = 

∠KBL = ∠LBM = ∠MBD = 2α so the circular segments on bases CH, HK, KL, LM, and 

MD are similar to the circular segment on base CD. Since :AC BC  as 5 :1 , 
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: : : : : 5 :1:1:1:1:1CD CH HK KL LM MD = so it follows that hexagon CHKLMD 

equals lune CGDF.  

 

5

3
m = : The Concave Octagon Lune 

 

The last lune for case m = 5/3 is the most complicated of the five. Starting with 

5 5
sin( ) sin( )

3 3
α α= use the substitution

3

α
ω = to rewrite the equation as 

5
sin(5 ) sin(3 )

3
ω ω= .  

 

Using suitable trig identities this can be rewritten as 

( )
5

sin( ) cos(4 ) sin(4 )cos( ) sin( )cos(2 ) sin(2 ) cos( )
3

ω ω ω ω ω ω ω ω+ = +  

which using double angle formulas for sine and cosine can be eventually reduced to a 

quadratic in 2sin ( )ω , that is  

( )4 24
16sin ( ) 15 20 sin ( ) 5 15 0

3
ω ω

 
+ − + − = 
 

 

for which we obtain 
15 15 60 6 15

sin( )
24

ω
− ± +

= , ugly but constructable. However 

only the "minus" expression satisfies 
5

sin(5 ) sin(3 )
3

ω ω= . Since 
3

α
ω =  we have 

2sin( ) sin(3 ) sin( )cos(2 ) sin(2 ) cos( ) sin( )(3 4sin ( ))α ω ω ω ω ω ω ω= = + = −  

which results in 
15 15 60 6 15 3 15 60 6 15

sin( )
24 6

α
 − − + + + +
 =
 
 

. 

Using a calculator α ≈ 0.8793 radians or 50.38°, β ≈ 1.4655 radians or 83.97° and we can 

verify that 
sin( ) 5

sin( ) 3

β

α
= .  

 

Since β is less than 90°, points A and B are not separated by E making the lune look a bit 

like concave pentagon lune. 
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Figure 9 

Figure 9 shows the lune where 

15 15 60 6 15 3 15 60 6 15
sin( )

24 6
CE α

 − − + + + +
 = =
 
 

 

 

1AC =  and 3
5

BC = . Since the two sectors ACD and BCD are equal in area, if we 

“subtract’” the area CBDF from both, it follows that lune CGDF is equal in area to the 

“dart-like” quadrilateral ACBD.  

 

We can also show the lune is equal in area to the eight-sided concave figure 

CHKLMDPN.  Since ∠CBG = β equals 
5

3
α , if we subtract angle α from it and bisect, 

we obtain the angle α/3. Construct angles∠ NAF = ∠ PAF = ∠KBG = ∠LBG = α/3.  

Bisect ∠CBK and ∠DBL. Thus ∠CAN = ∠NAP = ∠PAD = ∠CBH = ∠HBK = ∠KBL 

= ∠LBM = ∠MBD = 
2

3
α .   

 

Consequently isosceles triangles CAN, NAP and PAD are mutually congruent as are 

isosceles triangles CBH, HBK, KBL, LBM, and MBD so the corresponding circular 

segments are similar. Since radii :AC BC = 5 : 3  the circular segments on bases CN, 

NP and PD are to the circular segments on bases CH, HK, KL, LM, and MD as 5 : 3 .  
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Thus the area of the former three circular segments equals the area of the latter five 

circular segments so lune CGDF equals the concave octagon figure CHKLMDPN. 

  

Conclusion and Summary 

 

Are there any more lunes?  By the end of the 19th century only five quadrable lunes were 

known. Squarable lunes were investigate by D. Bernouilli, Cramer, and Euler 

(Bashmakova & Smirnova p. 26) and Heath reports that all five cases were found by 

Martin Johan Wallenius in 1766 (Heath p. 200). In 1840 T. Clausen who rediscovered the 

five quadrable lunes suggested that there were only five. (Bashmakova & Smirnova p. 

26).  However it wasn't until 1934 when the Russian mathematician Tschebatorev, using 

Galois theory, came close to a solution which his student Dorodnov completed in 1947. 

Their proof that only five lunes are constructable (Shenitzer p. 646) brought to a close the 

quest for quadrable lunes.  

 

To bring the paper full circle we end with a final construction attributed to Hippocrates 

that showed that if a certain lune were quadrable then the circle could be squared. 

 

Start with semi-circles with bases AB and CD where CD  is twice AB . Inscribe within 

the second semi-circle CD an isosceles trapezoid CEFD made up of three equilateral 

triangles. On the three smaller sides construct three semi-circle with bases CH, HK, and 

DK.  

 
Figure 10 

Since : : : 2 :1:1:1CD CH HK FD =  it follows that the semi-circle on CD equals the four 

semi-circles on AB, CH, HK, and KD. It also follows that semi-circle on AB equals the 

trapezoid CHKD minus the three lunes on CH, HK, and KD. 

 

Now if those three lunes formed by the intersection of the semi-circle on CD and the 

semi-circles in CH, HK, and KD were quadrable, then the semi-circle on AB is squarable!  

Hence the circle with diameter AB is squarable!8. However, in 1882 C. L. F. Lindemann 

                                                 
8 In his book Journey Through Genius [p. 20] Dunham points out that some ancient mathematicians 

believed that with this construction Hippocrates claimed that he had squared the circle. However Dunham 

explains that a mathematician of Hippocrates’ caliber would hardly make this kind of error! 

A B 
C D 

H K 

O 
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showed that π was transcendental. Thus it follows that the circle is not quadrable and 

hence the above lunes are not quadrable (Dunham p. 25). 

 

In his book Journey Through Genius, William Dunham talks about "truly great theorems" 

(Dunham p. 285). He mentions three characteristics of great theorems which he attributes 

to G.H. Hardy: "economy, inevitability, and unexpectedness." Dunham points out quite 

correctly that there is an aesthetics to good mathematics as seen in the elegance and 

beauty of the logic of a proof, the inevitability and clarity of reasoning which makes the 

reader say upon conclusion "of course this follows - how obvious" . 

 

But there is another dimension to good mathematics; it is the historical sweep of a good 

problem, the refinement of an original proof, the unexpected corollaries obtained later on, 

the fact that as mathematical notation and understanding grew and matured, that which 

was once difficult and obscure is made easy and transparent. While one admires the 

original pioneers for discoveries made under difficult conditions, one also appreciates the 

tools and notation of modern mathematics that now makes these discoveries "easily" 

accessible. 
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Appendix – Calculations for cases m = 3 and m = 3/2 

 

For m = 3 we obtain the equation sin(3 ) 3sin( )α α= . Using the sum and double angle 

identities for sine and cosine we obtain sin( )cos(2 ) sin(2 )cos( ) 3 sin( )α α α α α+ =  

which reduces to ( )24sin ( ) 3 3 0α − + = for which we obtain the solution 

3 3
sin( )

2
α

−
= , a value which is easily constructable. Note that α ≈ 0.5980 radians or 

34.26°, β ≈ 1.79409 radians or 102.79° and using a calculator it is easily to check that 

sin( ) sin( ) 3β α = . This is the isosceles trapezoid lune. 

 

For m = 3/2., starting with 
3 3

sin sin( )
2 2

α α
 

= 
 

 use the substitution 
2

α
ω =  to obtain 

the equation
3

sin(3 ) sin(2 )
2

ω ω= which can be rewritten as   

sin( )cos(2 ) sin(2 )cos( ) 6 sin( )cos( )ω ω ω ω ω ω+ = . This yields a quadratic in cos(ω) 

 
24cos ( ) 6 cos( ) 1 0ω ω− − =  

 

Thus 
6 22 7 33

cos( )
8 4

ω
± ±

= = and 
9 33

sin( )
4

ω =
∓

. Since 2α ω= , 

9 33 7 33 30 2 33
sin( ) sin(2 ) 2sin( )cos( ) 2

4 4 8
α ω ω ω

± ±
= = = =

∓
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Only the 
30 2 33

sin( )
8

α
+

=  solution works as a value which satisfies original 

equation. Thus α ≈ 0.9359 radians or 53.62° and β ≈ 1.4039 radians or 80.44°and 

33sin( ) sin( )
2 2

β α = = ).  This is the concave pentagon lune. 
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